123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 |
- require 'pl'
- local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
- package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path
- require 'optim'
- require 'xlua'
- require 'w2nn'
- local settings = require 'settings'
- local srcnn = require 'srcnn'
- local minibatch_adam = require 'minibatch_adam'
- local iproc = require 'iproc'
- local reconstruct = require 'reconstruct'
- local compression = require 'compression'
- local pairwise_transform = require 'pairwise_transform'
- local image_loader = require 'image_loader'
- local function save_test_scale(model, rgb, file)
- local up = reconstruct.scale(model, settings.scale, rgb, 128, settings.upsampling_filter)
- image.save(file, up)
- end
- local function save_test_jpeg(model, rgb, file)
- local im, count = reconstruct.image(model, rgb)
- image.save(file, im)
- end
- local function split_data(x, test_size)
- local index = torch.randperm(#x)
- local train_size = #x - test_size
- local train_x = {}
- local valid_x = {}
- for i = 1, train_size do
- train_x[i] = x[index[i]]
- end
- for i = 1, test_size do
- valid_x[i] = x[index[train_size + i]]
- end
- return train_x, valid_x
- end
- local function make_validation_set(x, transformer, n, patches)
- n = n or 4
- local data = {}
- for i = 1, #x do
- for k = 1, math.max(n / patches, 1) do
- local xy = transformer(x[i], true, patches)
- for j = 1, #xy do
- table.insert(data, {x = xy[j][1], y = xy[j][2]})
- end
- end
- xlua.progress(i, #x)
- collectgarbage()
- end
- local new_data = {}
- local perm = torch.randperm(#data)
- for i = 1, perm:size(1) do
- new_data[i] = data[perm[i]]
- end
- data = new_data
- return data
- end
- local function validate(model, criterion, data, batch_size)
- local loss = 0
- local loss_count = 0
- local inputs_tmp = torch.Tensor(batch_size,
- data[1].x:size(1),
- data[1].x:size(2),
- data[1].x:size(3)):zero()
- local targets_tmp = torch.Tensor(batch_size,
- data[1].y:size(1),
- data[1].y:size(2),
- data[1].y:size(3)):zero()
- local inputs = inputs_tmp:clone():cuda()
- local targets = targets_tmp:clone():cuda()
- for t = 1, #data, batch_size do
- if t + batch_size -1 > #data then
- break
- end
- for i = 1, batch_size do
- inputs_tmp[i]:copy(data[t + i - 1].x)
- targets_tmp[i]:copy(data[t + i - 1].y)
- end
- inputs:copy(inputs_tmp)
- targets:copy(targets_tmp)
- local z = model:forward(inputs)
- loss = loss + criterion:forward(z, targets)
- loss_count = loss_count + 1
- if loss_count % 10 == 0 then
- xlua.progress(t, #data)
- collectgarbage()
- end
- end
- xlua.progress(#data, #data)
- return loss / loss_count
- end
- local function create_criterion(model)
- if reconstruct.is_rgb(model) then
- local offset = reconstruct.offset_size(model)
- local output_w = settings.crop_size - offset * 2
- local weight = torch.Tensor(3, output_w * output_w)
- weight[1]:fill(0.29891 * 3) -- R
- weight[2]:fill(0.58661 * 3) -- G
- weight[3]:fill(0.11448 * 3) -- B
- return w2nn.ClippedWeightedHuberCriterion(weight, 0.1, {0.0, 1.0}):cuda()
- else
- local offset = reconstruct.offset_size(model)
- local output_w = settings.crop_size - offset * 2
- local weight = torch.Tensor(1, output_w * output_w)
- weight[1]:fill(1.0)
- return w2nn.ClippedWeightedHuberCriterion(weight, 0.1, {0.0, 1.0}):cuda()
- end
- end
- local function transformer(x, is_validation, n, offset)
- x = compression.decompress(x)
- n = n or settings.patches
- if is_validation == nil then is_validation = false end
- local random_color_noise_rate = nil
- local random_overlay_rate = nil
- local active_cropping_rate = nil
- local active_cropping_tries = nil
- if is_validation then
- active_cropping_rate = settings.active_cropping_rate
- active_cropping_tries = settings.active_cropping_tries
- random_color_noise_rate = 0.0
- random_overlay_rate = 0.0
- else
- active_cropping_rate = settings.active_cropping_rate
- active_cropping_tries = settings.active_cropping_tries
- random_color_noise_rate = settings.random_color_noise_rate
- random_overlay_rate = settings.random_overlay_rate
- end
-
- if settings.method == "scale" then
- return pairwise_transform.scale(x,
- settings.scale,
- settings.crop_size, offset,
- n,
- {
- downsampling_filters = settings.downsampling_filters,
- upsampling_filter = settings.upsampling_filter,
- random_half_rate = settings.random_half_rate,
- random_color_noise_rate = random_color_noise_rate,
- random_overlay_rate = random_overlay_rate,
- random_unsharp_mask_rate = settings.random_unsharp_mask_rate,
- max_size = settings.max_size,
- active_cropping_rate = active_cropping_rate,
- active_cropping_tries = active_cropping_tries,
- rgb = (settings.color == "rgb"),
- gamma_correction = settings.gamma_correction
- })
- elseif settings.method == "noise" then
- return pairwise_transform.jpeg(x,
- settings.style,
- settings.noise_level,
- settings.crop_size, offset,
- n,
- {
- random_half_rate = settings.random_half_rate,
- random_color_noise_rate = random_color_noise_rate,
- random_overlay_rate = random_overlay_rate,
- random_unsharp_mask_rate = settings.random_unsharp_mask_rate,
- max_size = settings.max_size,
- jpeg_chroma_subsampling_rate = settings.jpeg_chroma_subsampling_rate,
- active_cropping_rate = active_cropping_rate,
- active_cropping_tries = active_cropping_tries,
- nr_rate = settings.nr_rate,
- rgb = (settings.color == "rgb")
- })
- end
- end
- local function resampling(x, y, train_x, transformer, input_size, target_size)
- print("## resampling")
- for t = 1, #train_x do
- xlua.progress(t, #train_x)
- local xy = transformer(train_x[t], false, settings.patches)
- for i = 1, #xy do
- local index = (t - 1) * settings.patches + i
- x[index]:copy(xy[i][1])
- y[index]:copy(xy[i][2])
- end
- if t % 50 == 0 then
- collectgarbage()
- end
- end
- end
- local function plot(train, valid)
- gnuplot.plot({
- {'training', torch.Tensor(train), '-'},
- {'validation', torch.Tensor(valid), '-'}})
- end
- local function train()
- local hist_train = {}
- local hist_valid = {}
- local model = srcnn.create(settings.model, settings.backend, settings.color)
- local offset = reconstruct.offset_size(model)
- local pairwise_func = function(x, is_validation, n)
- return transformer(x, is_validation, n, offset)
- end
- local criterion = create_criterion(model)
- local eval_metric = nn.MSECriterion():cuda()
- local x = torch.load(settings.images)
- local train_x, valid_x = split_data(x, math.max(math.floor(settings.validation_rate * #x), 1))
- local adam_config = {
- learningRate = settings.learning_rate,
- xBatchSize = settings.batch_size,
- }
- local lrd_count = 0
- local ch = nil
- if settings.color == "y" then
- ch = 1
- elseif settings.color == "rgb" then
- ch = 3
- end
- local best_score = 1000.0
- print("# make validation-set")
- local valid_xy = make_validation_set(valid_x, pairwise_func,
- settings.validation_crops,
- settings.patches)
- valid_x = nil
-
- collectgarbage()
- model:cuda()
- print("load .. " .. #train_x)
- local x = torch.Tensor(settings.patches * #train_x,
- ch, settings.crop_size, settings.crop_size)
- local y = torch.Tensor(settings.patches * #train_x,
- ch * (settings.crop_size - offset * 2) * (settings.crop_size - offset * 2)):zero()
- for epoch = 1, settings.epoch do
- model:training()
- print("# " .. epoch)
- resampling(x, y, train_x, pairwise_func)
- for i = 1, settings.inner_epoch do
- local train_score = minibatch_adam(model, criterion, eval_metric, x, y, adam_config)
- print(train_score)
- model:evaluate()
- print("# validation")
- local score = validate(model, eval_metric, valid_xy, adam_config.xBatchSize)
- table.insert(hist_train, train_score.MSE)
- table.insert(hist_valid, score)
- if settings.plot then
- plot(hist_train, hist_valid)
- end
- if score < best_score then
- local test_image = image_loader.load_float(settings.test) -- reload
- lrd_count = 0
- best_score = score
- print("* update best model")
- if settings.save_history then
- torch.save(string.format(settings.model_file, epoch, i), model:clearState(), "ascii")
- if settings.method == "noise" then
- local log = path.join(settings.model_dir,
- ("noise%d_best.%d-%d.png"):format(settings.noise_level,
- epoch, i))
- save_test_jpeg(model, test_image, log)
- elseif settings.method == "scale" then
- local log = path.join(settings.model_dir,
- ("scale%.1f_best.%d-%d.png"):format(settings.scale,
- epoch, i))
- save_test_scale(model, test_image, log)
- end
- else
- torch.save(settings.model_file, model:clearState(), "ascii")
- if settings.method == "noise" then
- local log = path.join(settings.model_dir,
- ("noise%d_best.png"):format(settings.noise_level))
- save_test_jpeg(model, test_image, log)
- elseif settings.method == "scale" then
- local log = path.join(settings.model_dir,
- ("scale%.1f_best.png"):format(settings.scale))
- save_test_scale(model, test_image, log)
- end
- end
- else
- lrd_count = lrd_count + 1
- if lrd_count > 2 then
- adam_config.learningRate = adam_config.learningRate * 0.8
- print("* learning rate decay: " .. adam_config.learningRate)
- lrd_count = 0
- end
- end
- print("PSNR: " .. 10 * math.log10(1 / score) .. ", MSE: " .. score .. ", Best MSE: " .. best_score)
- collectgarbage()
- end
- end
- end
- if settings.gpu > 0 then
- cutorch.setDevice(settings.gpu)
- end
- torch.manualSeed(settings.seed)
- cutorch.manualSeed(settings.seed)
- print(settings)
- train()
|