benchmark.lua 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
  2. package.path = path.join(path.dirname(__FILE__), "..", "lib", "?.lua;") .. package.path
  3. require 'xlua'
  4. require 'pl'
  5. require 'w2nn'
  6. local iproc = require 'iproc'
  7. local reconstruct = require 'reconstruct'
  8. local image_loader = require 'image_loader'
  9. local gm = require 'graphicsmagick'
  10. local cmd = torch.CmdLine()
  11. cmd:text()
  12. cmd:text("waifu2x-benchmark")
  13. cmd:text("Options:")
  14. cmd:option("-seed", 11, 'fixed input seed')
  15. cmd:option("-dir", "./data/test", 'test image directory')
  16. cmd:option("-model1_dir", "./models/anime_style_art", 'model1 directory')
  17. cmd:option("-model2_dir", "./models/anime_style_art_rgb", 'model2 directory')
  18. cmd:option("-method", "scale", '(scale|noise)')
  19. cmd:option("-noise_level", 1, '(1|2)')
  20. cmd:option("-color_weight", "y", '(y|rgb)')
  21. cmd:option("-jpeg_quality", 75, 'jpeg quality')
  22. cmd:option("-jpeg_times", 1, 'jpeg compression times')
  23. cmd:option("-jpeg_quality_down", 5, 'value of jpeg quality to decrease each times')
  24. local opt = cmd:parse(arg)
  25. torch.setdefaulttensortype('torch.FloatTensor')
  26. if cudnn then
  27. cudnn.fastest = true
  28. cudnn.benchmark = false
  29. end
  30. local function MSE(x1, x2)
  31. return (x1 - x2):pow(2):mean()
  32. end
  33. local function YMSE(x1, x2)
  34. local x1_2 = x1:clone()
  35. local x2_2 = x2:clone()
  36. x1_2[1]:mul(0.299 * 3)
  37. x1_2[2]:mul(0.587 * 3)
  38. x1_2[3]:mul(0.114 * 3)
  39. x2_2[1]:mul(0.299 * 3)
  40. x2_2[2]:mul(0.587 * 3)
  41. x2_2[3]:mul(0.114 * 3)
  42. return (x1_2 - x2_2):pow(2):mean()
  43. end
  44. local function PSNR(x1, x2)
  45. local mse = MSE(x1, x2)
  46. return 20 * (math.log(1.0 / math.sqrt(mse)) / math.log(10))
  47. end
  48. local function YPSNR(x1, x2)
  49. local mse = YMSE(x1, x2)
  50. return 20 * (math.log((0.587 * 3) / math.sqrt(mse)) / math.log(10))
  51. end
  52. local function transform_jpeg(x)
  53. for i = 1, opt.jpeg_times do
  54. jpeg = gm.Image(x, "RGB", "DHW")
  55. jpeg:format("jpeg")
  56. jpeg:samplingFactors({1.0, 1.0, 1.0})
  57. blob, len = jpeg:toBlob(opt.jpeg_quality - (i - 1) * opt.jpeg_quality_down)
  58. jpeg:fromBlob(blob, len)
  59. x = jpeg:toTensor("byte", "RGB", "DHW")
  60. end
  61. return x
  62. end
  63. local function transform_scale(x)
  64. return iproc.scale(x,
  65. x:size(3) * 0.5,
  66. x:size(2) * 0.5,
  67. "Box")
  68. end
  69. local function benchmark(color_weight, x, input_func, v1_noise, v2_noise)
  70. local v1_mse = 0
  71. local v2_mse = 0
  72. local v1_psnr = 0
  73. local v2_psnr = 0
  74. for i = 1, #x do
  75. local ground_truth = x[i]
  76. local input, v1_output, v2_output
  77. input = input_func(ground_truth)
  78. input = input:float():div(255)
  79. ground_truth = ground_truth:float():div(255)
  80. t = sys.clock()
  81. if input:size(3) == ground_truth:size(3) then
  82. v1_output = reconstruct.image(v1_noise, input)
  83. v2_output = reconstruct.image(v2_noise, input)
  84. else
  85. v1_output = reconstruct.scale(v1_noise, 2.0, input)
  86. v2_output = reconstruct.scale(v2_noise, 2.0, input)
  87. end
  88. if color_weight == "y" then
  89. v1_mse = v1_mse + YMSE(ground_truth, v1_output)
  90. v1_psnr = v1_psnr + YPSNR(ground_truth, v1_output)
  91. v2_mse = v2_mse + YMSE(ground_truth, v2_output)
  92. v2_psnr = v2_psnr + YPSNR(ground_truth, v2_output)
  93. elseif color_weight == "rgb" then
  94. v1_mse = v1_mse + MSE(ground_truth, v1_output)
  95. v1_psnr = v1_psnr + PSNR(ground_truth, v1_output)
  96. v2_mse = v2_mse + MSE(ground_truth, v2_output)
  97. v2_psnr = v2_psnr + PSNR(ground_truth, v2_output)
  98. end
  99. io.stdout:write(
  100. string.format("%d/%d; v1_mse=%f, v2_mse=%f, v1_psnr=%f, v2_psnr=%f \r",
  101. i, #x,
  102. v1_mse / i, v2_mse / i,
  103. v1_psnr / i, v2_psnr / i
  104. )
  105. )
  106. io.stdout:flush()
  107. end
  108. io.stdout:write("\n")
  109. end
  110. local function load_data(test_dir)
  111. local test_x = {}
  112. local files = dir.getfiles(test_dir, "*.*")
  113. for i = 1, #files do
  114. table.insert(test_x, iproc.crop_mod4(image_loader.load_byte(files[i])))
  115. xlua.progress(i, #files)
  116. end
  117. return test_x
  118. end
  119. print(opt)
  120. torch.manualSeed(opt.seed)
  121. cutorch.manualSeed(opt.seed)
  122. if opt.method == "scale" then
  123. local v1 = torch.load(path.join(opt.model1_dir, "scale2.0x_model.t7"), "ascii")
  124. local v2 = torch.load(path.join(opt.model2_dir, "scale2.0x_model.t7"), "ascii")
  125. local test_x = load_data(opt.dir)
  126. benchmark(opt.color_weight, test_x, transform_scale, v1, v2)
  127. elseif opt.method == "noise" then
  128. local v1 = torch.load(path.join(opt.model1_dir, string.format("noise%d_model.t7", opt.noise_level)), "ascii")
  129. local v2 = torch.load(path.join(opt.model2_dir, string.format("noise%d_model.t7", opt.noise_level)), "ascii")
  130. local test_x = load_data(opt.dir)
  131. benchmark(opt.color_weight, test_x, transform_jpeg, v1, v2)
  132. end