pairwise_transform.lua 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254
  1. require 'image'
  2. local gm = require 'graphicsmagick'
  3. local iproc = require 'iproc'
  4. local data_augmentation = require 'data_augmentation'
  5. local pairwise_transform = {}
  6. local function random_half(src, p)
  7. if torch.uniform() < p then
  8. local filter = ({"Box","Box","Blackman","Sinc","Lanczos"})[torch.random(1, 5)]
  9. return iproc.scale(src, src:size(3) * 0.5, src:size(2) * 0.5, filter)
  10. else
  11. return src
  12. end
  13. end
  14. local function crop_if_large(src, max_size)
  15. local tries = 4
  16. if src:size(2) > max_size and src:size(3) > max_size then
  17. local rect
  18. for i = 1, tries do
  19. local yi = torch.random(0, src:size(2) - max_size)
  20. local xi = torch.random(0, src:size(3) - max_size)
  21. rect = iproc.crop(src, xi, yi, xi + max_size, yi + max_size)
  22. -- ignore simple background
  23. if rect:float():std() >= 0 then
  24. break
  25. end
  26. end
  27. return rect
  28. else
  29. return src
  30. end
  31. end
  32. local function preprocess(src, crop_size, options)
  33. local dest = src
  34. dest = random_half(dest, options.random_half_rate)
  35. dest = crop_if_large(dest, math.max(crop_size * 2, options.max_size))
  36. dest = data_augmentation.flip(dest)
  37. dest = data_augmentation.color_noise(dest, options.random_color_noise_rate)
  38. dest = data_augmentation.overlay(dest, options.random_overlay_rate)
  39. dest = data_augmentation.shift_1px(dest)
  40. return dest
  41. end
  42. local function active_cropping(x, y, size, p, tries)
  43. assert("x:size == y:size", x:size(2) == y:size(2) and x:size(3) == y:size(3))
  44. local r = torch.uniform()
  45. if p < r then
  46. local xi = torch.random(0, y:size(3) - (size + 1))
  47. local yi = torch.random(0, y:size(2) - (size + 1))
  48. local xc = iproc.crop(x, xi, yi, xi + size, yi + size)
  49. local yc = iproc.crop(y, xi, yi, xi + size, yi + size)
  50. return xc, yc
  51. else
  52. local best_se = 0.0
  53. local best_xc, best_yc
  54. local m = torch.FloatTensor(x:size(1), size, size)
  55. for i = 1, tries do
  56. local xi = torch.random(0, y:size(3) - (size + 1))
  57. local yi = torch.random(0, y:size(2) - (size + 1))
  58. local xc = iproc.crop(x, xi, yi, xi + size, yi + size)
  59. local yc = iproc.crop(y, xi, yi, xi + size, yi + size)
  60. local xcf = iproc.byte2float(xc)
  61. local ycf = iproc.byte2float(yc)
  62. local se = m:copy(xcf):add(-1.0, ycf):pow(2):sum()
  63. if se >= best_se then
  64. best_xc = xcf
  65. best_yc = ycf
  66. best_se = se
  67. end
  68. end
  69. return best_xc, best_yc
  70. end
  71. end
  72. function pairwise_transform.scale(src, scale, size, offset, n, options)
  73. local filters = {
  74. "Box","Box", -- 0.012756949974688
  75. "Blackman", -- 0.013191924552285
  76. --"Cartom", -- 0.013753536746706
  77. --"Hanning", -- 0.013761314529647
  78. --"Hermite", -- 0.013850225205266
  79. "Sinc", -- 0.014095824314306
  80. "Lanczos", -- 0.014244299255442
  81. }
  82. local unstable_region_offset = 8
  83. local downscale_filter = filters[torch.random(1, #filters)]
  84. local y = preprocess(src, size, options)
  85. assert(y:size(2) % 4 == 0 and y:size(3) % 4 == 0)
  86. local down_scale = 1.0 / scale
  87. local x = iproc.scale(iproc.scale(y, y:size(3) * down_scale,
  88. y:size(2) * down_scale, downscale_filter),
  89. y:size(3), y:size(2))
  90. x = iproc.crop(x, unstable_region_offset, unstable_region_offset,
  91. x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)
  92. y = iproc.crop(y, unstable_region_offset, unstable_region_offset,
  93. y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)
  94. assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)
  95. assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))
  96. local batch = {}
  97. for i = 1, n do
  98. local xc, yc = active_cropping(x, y,
  99. size,
  100. options.active_cropping_rate,
  101. options.active_cropping_tries)
  102. xc = iproc.byte2float(xc)
  103. yc = iproc.byte2float(yc)
  104. if options.rgb then
  105. else
  106. yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
  107. xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
  108. end
  109. table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
  110. end
  111. return batch
  112. end
  113. function pairwise_transform.jpeg_(src, quality, size, offset, n, options)
  114. local unstable_region_offset = 8
  115. local y = preprocess(src, size, options)
  116. local x = y
  117. for i = 1, #quality do
  118. x = gm.Image(x, "RGB", "DHW")
  119. x:format("jpeg"):depth(8)
  120. if options.jpeg_sampling_factors == 444 then
  121. x:samplingFactors({1.0, 1.0, 1.0})
  122. else -- 420
  123. x:samplingFactors({2.0, 1.0, 1.0})
  124. end
  125. local blob, len = x:toBlob(quality[i])
  126. x:fromBlob(blob, len)
  127. x = x:toTensor("byte", "RGB", "DHW")
  128. end
  129. x = iproc.crop(x, unstable_region_offset, unstable_region_offset,
  130. x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)
  131. y = iproc.crop(y, unstable_region_offset, unstable_region_offset,
  132. y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)
  133. assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)
  134. assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))
  135. local batch = {}
  136. for i = 1, n do
  137. local xc, yc = active_cropping(x, y, size,
  138. options.active_cropping_rate,
  139. options.active_cropping_tries)
  140. xc = iproc.byte2float(xc)
  141. yc = iproc.byte2float(yc)
  142. if options.rgb then
  143. else
  144. yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
  145. xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
  146. end
  147. if torch.uniform() < options.nr_rate then
  148. -- reducing noise
  149. table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
  150. else
  151. -- ratain useful details
  152. table.insert(batch, {yc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
  153. end
  154. end
  155. return batch
  156. end
  157. function pairwise_transform.jpeg(src, style, level, size, offset, n, options)
  158. if style == "art" then
  159. if level == 1 then
  160. return pairwise_transform.jpeg_(src, {torch.random(65, 85)},
  161. size, offset, n, options)
  162. elseif level == 2 then
  163. local r = torch.uniform()
  164. if r > 0.6 then
  165. return pairwise_transform.jpeg_(src, {torch.random(27, 70)},
  166. size, offset, n, options)
  167. elseif r > 0.3 then
  168. local quality1 = torch.random(37, 70)
  169. local quality2 = quality1 - torch.random(5, 10)
  170. return pairwise_transform.jpeg_(src, {quality1, quality2},
  171. size, offset, n, options)
  172. else
  173. local quality1 = torch.random(52, 70)
  174. local quality2 = quality1 - torch.random(5, 15)
  175. local quality3 = quality1 - torch.random(15, 25)
  176. return pairwise_transform.jpeg_(src,
  177. {quality1, quality2, quality3},
  178. size, offset, n, options)
  179. end
  180. else
  181. error("unknown noise level: " .. level)
  182. end
  183. elseif style == "photo" then
  184. if level == 1 then
  185. return pairwise_transform.jpeg_(src, {torch.random(30, 75)},
  186. size, offset, n,
  187. options)
  188. elseif level == 2 then
  189. if torch.uniform() > 0.6 then
  190. return pairwise_transform.jpeg_(src, {torch.random(30, 60)},
  191. size, offset, n, options)
  192. else
  193. local quality1 = torch.random(40, 60)
  194. local quality2 = quality1 - torch.random(5, 10)
  195. return pairwise_transform.jpeg_(src, {quality1, quality2},
  196. size, offset, n, options)
  197. end
  198. else
  199. error("unknown noise level: " .. level)
  200. end
  201. else
  202. error("unknown style: " .. style)
  203. end
  204. end
  205. function pairwise_transform.test_jpeg(src)
  206. torch.setdefaulttensortype("torch.FloatTensor")
  207. local options = {random_color_noise_rate = 0.5,
  208. random_half_rate = 0.5,
  209. random_overlay_rate = 0.5,
  210. nr_rate = 1.0,
  211. active_cropping_rate = 0.5,
  212. active_cropping_tries = 10,
  213. max_size = 256,
  214. rgb = true
  215. }
  216. local image = require 'image'
  217. local src = image.lena()
  218. for i = 1, 9 do
  219. local xy = pairwise_transform.jpeg(src,
  220. "art",
  221. torch.random(1, 2),
  222. 128, 7, 1, options)
  223. image.display({image = xy[1][1], legend = "y:" .. (i * 10), min=0, max=1})
  224. image.display({image = xy[1][2], legend = "x:" .. (i * 10), min=0, max=1})
  225. end
  226. end
  227. function pairwise_transform.test_scale(src)
  228. torch.setdefaulttensortype("torch.FloatTensor")
  229. local options = {random_color_noise_rate = 0.5,
  230. random_half_rate = 0.5,
  231. random_overlay_rate = 0.5,
  232. active_cropping_rate = 0.5,
  233. active_cropping_tries = 10,
  234. max_size = 256,
  235. rgb = true
  236. }
  237. local image = require 'image'
  238. local src = image.lena()
  239. for i = 1, 10 do
  240. local xy = pairwise_transform.scale(src, 2.0, 128, 7, 1, options)
  241. image.display({image = xy[1][1], legend = "y:" .. (i * 10), min = 0, max = 1})
  242. image.display({image = xy[1][2], legend = "x:" .. (i * 10), min = 0, max = 1})
  243. end
  244. end
  245. return pairwise_transform