| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 | require 'image'local iproc = require 'iproc'local data_augmentation = require 'data_augmentation'local pairwise_transform_utils = {}function pairwise_transform_utils.random_half(src, p, filters)   if torch.uniform() < p then      local filter = filters[torch.random(1, #filters)]      return iproc.scale(src, src:size(3) * 0.5, src:size(2) * 0.5, filter)   else      return src   endendfunction pairwise_transform_utils.crop_if_large(src, max_size)   local tries = 4   if src:size(2) > max_size and src:size(3) > max_size then      local rect      for i = 1, tries do	 local yi = torch.random(0, src:size(2) - max_size)	 local xi = torch.random(0, src:size(3) - max_size)	 rect = iproc.crop(src, xi, yi, xi + max_size, yi + max_size)	 -- ignore simple background	 if rect:float():std() >= 0 then	    break	 end      end      return rect   else      return src   endendfunction pairwise_transform_utils.preprocess(src, crop_size, options)   local dest = src   dest = pairwise_transform_utils.random_half(dest, options.random_half_rate, options.downsampling_filters)   dest = pairwise_transform_utils.crop_if_large(dest, math.max(crop_size * 2, options.max_size))   dest = data_augmentation.flip(dest)   dest = data_augmentation.color_noise(dest, options.random_color_noise_rate)   dest = data_augmentation.overlay(dest, options.random_overlay_rate)   dest = data_augmentation.unsharp_mask(dest, options.random_unsharp_mask_rate)   dest = data_augmentation.shift_1px(dest)      return destendfunction pairwise_transform_utils.active_cropping(x, y, lowres_y, size, scale, p, tries)   assert("x:size == y:size", x:size(2) * scale == y:size(2) and x:size(3) * scale == y:size(3))   assert("crop_size % scale == 0", size % scale == 0)   local r = torch.uniform()   local t = "float"   if x:type() == "torch.ByteTensor" then      t = "byte"   end   if p < r then      local xi = torch.random(1, x:size(3) - (size + 1)) * scale      local yi = torch.random(1, x:size(2) - (size + 1)) * scale      local yc = iproc.crop(y, xi, yi, xi + size, yi + size)      local xc = iproc.crop(x, xi / scale, yi / scale, xi / scale + size / scale, yi / scale + size / scale)      return xc, yc   else      local best_se = 0.0      local best_xi, best_yi      local m = torch.FloatTensor(y:size(1), size, size)      for i = 1, tries do	 local xi = torch.random(1, x:size(3) - (size + 1)) * scale	 local yi = torch.random(1, x:size(2) - (size + 1)) * scale	 local xc = iproc.crop(y, xi, yi, xi + size, yi + size)	 local lc = iproc.crop(lowres_y, xi, yi, xi + size, yi + size)	 local xcf = iproc.byte2float(xc)	 local lcf = iproc.byte2float(lc)	 local se = m:copy(xcf):add(-1.0, lcf):pow(2):sum()	 if se >= best_se then	    best_xi = xi	    best_yi = yi	    best_se = se	 end      end      local yc = iproc.crop(y, best_xi, best_yi, best_xi + size, best_yi + size)      local xc = iproc.crop(x, best_xi / scale, best_yi / scale, best_xi / scale + size / scale, best_yi / scale + size / scale)      return xc, yc   endendreturn pairwise_transform_utils
 |