minibatch_adam.lua 1.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
  1. require 'optim'
  2. require 'cutorch'
  3. require 'xlua'
  4. local function minibatch_adam(model, criterion,
  5. train_x, train_y,
  6. config)
  7. local parameters, gradParameters = model:getParameters()
  8. config = config or {}
  9. local sum_loss = 0
  10. local count_loss = 0
  11. local batch_size = config.xBatchSize or 32
  12. local shuffle = torch.randperm(train_x:size(1))
  13. local c = 1
  14. local inputs_tmp = torch.Tensor(batch_size,
  15. train_x:size(2), train_x:size(3), train_x:size(4)):zero()
  16. local targets_tmp = torch.Tensor(batch_size,
  17. train_y:size(2)):zero()
  18. local inputs = inputs_tmp:clone():cuda()
  19. local targets = targets_tmp:clone():cuda()
  20. print("## update")
  21. for t = 1, train_x:size(1), batch_size do
  22. if t + batch_size -1 > train_x:size(1) then
  23. break
  24. end
  25. xlua.progress(t, train_x:size(1))
  26. for i = 1, batch_size do
  27. inputs_tmp[i]:copy(train_x[shuffle[t + i - 1]])
  28. targets_tmp[i]:copy(train_y[shuffle[t + i - 1]])
  29. end
  30. inputs:copy(inputs_tmp)
  31. targets:copy(targets_tmp)
  32. local feval = function(x)
  33. if x ~= parameters then
  34. parameters:copy(x)
  35. end
  36. gradParameters:zero()
  37. local output = model:forward(inputs)
  38. local f = criterion:forward(output, targets)
  39. sum_loss = sum_loss + f
  40. count_loss = count_loss + 1
  41. model:backward(inputs, criterion:backward(output, targets))
  42. return f, gradParameters
  43. end
  44. optim.adam(feval, parameters, config)
  45. c = c + 1
  46. if c % 50 == 0 then
  47. collectgarbage()
  48. end
  49. end
  50. xlua.progress(train_x:size(1), train_x:size(1))
  51. return { loss = sum_loss / count_loss}
  52. end
  53. return minibatch_adam