123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- local pairwise_utils = require 'pairwise_transform_utils'
- local iproc = require 'iproc'
- local gm = {}
- gm.Image = require 'graphicsmagick.Image'
- local pairwise_transform = {}
- local function add_jpeg_noise_(x, quality, options)
- local factors
- if torch.uniform() < options.jpeg_chroma_subsampling_rate then
- -- YUV 420
- factors = {2.0, 1.0, 1.0}
- else
- -- YUV 444
- factors = {1.0, 1.0, 1.0}
- end
- for i = 1, #quality do
- x = gm.Image(x, "RGB", "DHW")
- local blob, len = x:format("jpeg"):depth(8):samplingFactors(factors):toBlob(quality[i])
- x:fromBlob(blob, len)
- x = x:toTensor("byte", "RGB", "DHW")
- end
- return x
- end
- local function add_jpeg_noise(src, style, level, options)
- if style == "art" then
- if level == 0 then
- return add_jpeg_noise_(src, {torch.random(85, 95)}, options)
- elseif level == 1 then
- return add_jpeg_noise_(src, {torch.random(65, 85)}, options)
- elseif level == 2 or level == 3 then
- -- level 2/3 adjusting by -nr_rate. for level3, -nr_rate=1
- local r = torch.uniform()
- if r > 0.4 then
- return add_jpeg_noise_(src, {torch.random(27, 70)}, options)
- elseif r > 0.1 then
- local quality1 = torch.random(37, 70)
- local quality2 = quality1 - torch.random(5, 10)
- return add_jpeg_noise_(src, {quality1, quality2}, options)
- else
- local quality1 = torch.random(52, 70)
- local quality2 = quality1 - torch.random(5, 15)
- local quality3 = quality1 - torch.random(15, 25)
- return add_jpeg_noise_(src, {quality1, quality2, quality3}, options)
- end
- else
- error("unknown noise level: " .. level)
- end
- elseif style == "photo" then
- if level == 0 then
- return add_jpeg_noise_(src, {torch.random(85, 95)}, options)
- else
- -- level adjusting by -nr_rate
- return add_jpeg_noise_(src, {torch.random(37, 70)}, options)
- end
- else
- error("unknown style: " .. style)
- end
- end
- function pairwise_transform.jpeg_scale(src, scale, style, noise_level, size, offset, n, options)
- local filters = options.downsampling_filters
- if options.data.filters then
- filters = options.data.filters
- end
- local unstable_region_offset = 8
- local downsampling_filter = filters[torch.random(1, #filters)]
- local blur = torch.uniform(options.resize_blur_min, options.resize_blur_max)
- local y = pairwise_utils.preprocess(src, size, options)
- assert(y:size(2) % 4 == 0 and y:size(3) % 4 == 0)
- local down_scale = 1.0 / scale
- local x
- local small = iproc.scale(y, y:size(3) * down_scale,
- y:size(2) * down_scale, downsampling_filter, blur)
- if options.x_upsampling then
- x = iproc.scale(small, y:size(3), y:size(2), "Box")
- else
- x = small
- end
- local scale_inner = scale
- if options.x_upsampling then
- scale_inner = 1
- end
- x = iproc.crop(x, unstable_region_offset, unstable_region_offset,
- x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)
- y = iproc.crop(y, unstable_region_offset * scale_inner, unstable_region_offset * scale_inner,
- y:size(3) - unstable_region_offset * scale_inner, y:size(2) - unstable_region_offset * scale_inner)
- if options.x_upsampling then
- assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)
- assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))
- else
- assert(x:size(1) == y:size(1) and x:size(2) * scale == y:size(2) and x:size(3) * scale == y:size(3))
- end
- local batch = {}
- local lowres_y = pairwise_utils.low_resolution(y)
- local x_noise = add_jpeg_noise(x, style, noise_level, options)
- local xs, ys, ls, ns = pairwise_utils.flip_augmentation(x, y, lowres_y, x_noise)
- for i = 1, n do
- local t = (i % #xs) + 1
- local xc, yc
- if torch.uniform() < options.nr_rate then
- -- scale + noise reduction
- xc, yc = pairwise_utils.active_cropping(ns[t], ys[t], ls[t],
- size,
- scale_inner,
- options.active_cropping_rate,
- options.active_cropping_tries)
- else
- -- scale
- xc, yc = pairwise_utils.active_cropping(xs[t], ys[t], ls[t],
- size,
- scale_inner,
- options.active_cropping_rate,
- options.active_cropping_tries)
- end
- xc = iproc.byte2float(xc)
- yc = iproc.byte2float(yc)
- if options.rgb then
- else
- yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
- xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
- end
- table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
- end
- return batch
- end
- function pairwise_transform.test_jpeg_scale(src)
- torch.setdefaulttensortype("torch.FloatTensor")
- local options = {random_color_noise_rate = 0.5,
- random_half_rate = 0.5,
- random_overlay_rate = 0.5,
- random_unsharp_mask_rate = 0.5,
- active_cropping_rate = 0.5,
- active_cropping_tries = 10,
- max_size = 256,
- x_upsampling = false,
- downsampling_filters = "Box",
- rgb = true
- }
- local image = require 'image'
- local src = image.lena()
- for i = 1, 10 do
- local xy = pairwise_transform.jpeg_scale(src, 2.0, "art", 1, 128, 7, 1, options)
- image.display({image = xy[1][1], legend = "y:" .. (i * 10), min = 0, max = 1})
- image.display({image = xy[1][2], legend = "x:" .. (i * 10), min = 0, max = 1})
- end
- end
- return pairwise_transform
|