123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- require './lib/portable'
- require './lib/mynn'
- require 'xlua'
- require 'pl'
- local iproc = require './lib/iproc'
- local reconstruct = require './lib/reconstruct'
- local image_loader = require './lib/image_loader'
- local gm = require 'graphicsmagick'
- local cmd = torch.CmdLine()
- cmd:text()
- cmd:text("waifu2x-benchmark")
- cmd:text("Options:")
- cmd:option("-seed", 11, 'fixed input seed')
- cmd:option("-test_dir", "./test", 'test image directory')
- cmd:option("-jpeg_quality", 50, 'jpeg quality')
- cmd:option("-jpeg_times", 3, 'number of jpeg compression ')
- cmd:option("-jpeg_quality_down", 5, 'reducing jpeg quality each times')
- cmd:option("-core", 4, 'threads')
- local opt = cmd:parse(arg)
- torch.setnumthreads(opt.core)
- torch.setdefaulttensortype('torch.FloatTensor')
- local function MSE(x1, x2)
- return (x1 - x2):pow(2):mean()
- end
- local function YMSE(x1, x2)
- local x1_2 = x1:clone()
- local x2_2 = x2:clone()
- x1_2[1]:mul(0.299 * 3)
- x1_2[2]:mul(0.587 * 3)
- x1_2[3]:mul(0.114 * 3)
-
- x2_2[1]:mul(0.299 * 3)
- x2_2[2]:mul(0.587 * 3)
- x2_2[3]:mul(0.114 * 3)
-
- return (x1_2 - x2_2):pow(2):mean()
- end
- local function PSNR(x1, x2)
- local mse = MSE(x1, x2)
- return 20 * (math.log(1.0 / math.sqrt(mse)) / math.log(10))
- end
- local function YPSNR(x1, x2)
- local mse = YMSE(x1, x2)
- return 20 * (math.log((0.587 * 3) / math.sqrt(mse)) / math.log(10))
- end
- local function transform_jpeg(x)
- for i = 1, opt.jpeg_times do
- jpeg = gm.Image(x, "RGB", "DHW")
- jpeg:format("jpeg")
- jpeg:samplingFactors({1.0, 1.0, 1.0})
- blob, len = jpeg:toBlob(opt.jpeg_quality - (i - 1) * opt.jpeg_quality_down)
- jpeg:fromBlob(blob, len)
- x = jpeg:toTensor("byte", "RGB", "DHW")
- end
- return x
- end
- local function noise_benchmark(x, v1_noise, v2_noise)
- local v1_mse = 0
- local v2_mse = 0
- local jpeg_mse = 0
- local v1_psnr = 0
- local v2_psnr = 0
- local jpeg_psnr = 0
- local v1_time = 0
- local v2_time = 0
-
- for i = 1, #x do
- local ground_truth = x[i]
- local jpg, blob, len, input, v1_out, v2_out, t, mse
- input = transform_jpeg(ground_truth)
- input = input:float():div(255)
- ground_truth = ground_truth:float():div(255)
-
- jpeg_mse = jpeg_mse + MSE(ground_truth, input)
- jpeg_psnr = jpeg_psnr + PSNR(ground_truth, input)
-
- t = sys.clock()
- v1_output = reconstruct.image(v1_noise, input)
- v1_time = v1_time + (sys.clock() - t)
- v1_mse = v1_mse + MSE(ground_truth, v1_output)
- v1_psnr = v1_psnr + PSNR(ground_truth, v1_output)
-
- t = sys.clock()
- v2_output = reconstruct.image(v2_noise, input)
- v2_time = v2_time + (sys.clock() - t)
- v2_mse = v2_mse + MSE(ground_truth, v2_output)
- v2_psnr = v2_psnr + PSNR(ground_truth, v2_output)
-
- io.stdout:write(
- string.format("%d/%d; v1_time=%f, v2_time=%f, jpeg_mse=%f, v1_mse=%f, v2_mse=%f, jpeg_psnr=%f, v1_psnr=%f, v2_psnr=%f \r",
- i, #x,
- v1_time / i, v2_time / i,
- jpeg_mse / i,
- v1_mse / i, v2_mse / i,
- jpeg_psnr / i,
- v1_psnr / i, v2_psnr / i
- )
- )
- io.stdout:flush()
- end
- io.stdout:write("\n")
- end
- local function noise_scale_benchmark(x, params, v1_noise, v1_scale, v2_noise, v2_scale)
- local v1_mse = 0
- local v2_mse = 0
- local jinc_mse = 0
- local v1_time = 0
- local v2_time = 0
-
- for i = 1, #x do
- local ground_truth = x[i]
- local downscale = iproc.scale(ground_truth,
- ground_truth:size(3) * 0.5,
- ground_truth:size(2) * 0.5,
- params[i].filter)
- local jpg, blob, len, input, v1_output, v2_output, jinc_output, t, mse
-
- jpeg = gm.Image(downscale, "RGB", "DHW")
- jpeg:format("jpeg")
- blob, len = jpeg:toBlob(params[i].quality)
- jpeg:fromBlob(blob, len)
- input = jpeg:toTensor("byte", "RGB", "DHW")
- input = input:float():div(255)
- ground_truth = ground_truth:float():div(255)
- jinc_output = iproc.scale(input, input:size(3) * 2, input:size(2) * 2, "Jinc")
- jinc_mse = jinc_mse + (ground_truth - jinc_output):pow(2):mean()
-
- t = sys.clock()
- v1_output = reconstruct.image(v1_noise, input)
- v1_output = reconstruct.scale(v1_scale, 2.0, v1_output)
- v1_time = v1_time + (sys.clock() - t)
- mse = (ground_truth - v1_output):pow(2):mean()
- v1_mse = v1_mse + mse
-
- t = sys.clock()
- v2_output = reconstruct.image(v2_noise, input)
- v2_output = reconstruct.scale(v2_scale, 2.0, v2_output)
- v2_time = v2_time + (sys.clock() - t)
- mse = (ground_truth - v2_output):pow(2):mean()
- v2_mse = v2_mse + mse
-
- io.stdout:write(string.format("%d/%d; time: v1=%f, v2=%f, v1/v2=%f; mse: jinc=%f, v1=%f(%f), v2=%f(%f), v1/v2=%f \r",
- i, #x,
- v1_time / i, v2_time / i,
- (v1_time / i) / (v2_time / i),
- jinc_mse / i,
- v1_mse / i, (v1_mse/i) / (jinc_mse/i),
- v2_mse / i, (v2_mse/i) / (jinc_mse/i),
- (v1_mse / i) / (v2_mse / i)))
-
- io.stdout:flush()
- end
- io.stdout:write("\n")
- end
- local function scale_benchmark(x, params, v1_scale, v2_scale)
- local v1_mse = 0
- local v2_mse = 0
- local jinc_mse = 0
- local v1_psnr = 0
- local v2_psnr = 0
- local jinc_psnr = 0
-
- local v1_time = 0
- local v2_time = 0
-
- for i = 1, #x do
- local ground_truth = x[i]
- local downscale = iproc.scale(ground_truth,
- ground_truth:size(3) * 0.5,
- ground_truth:size(2) * 0.5,
- params[i].filter)
- local jpg, blob, len, input, v1_output, v2_output, jinc_output, t, mse
- input = downscale
- input = input:float():div(255)
- ground_truth = ground_truth:float():div(255)
- jinc_output = iproc.scale(input, input:size(3) * 2, input:size(2) * 2, "Jinc")
- mse = (ground_truth - jinc_output):pow(2):mean()
- jinc_mse = jinc_mse + mse
- jinc_psnr = jinc_psnr + (10 * (math.log(1.0 / mse) / math.log(10)))
-
- t = sys.clock()
- v1_output = reconstruct.scale(v1_scale, 2.0, input)
- v1_time = v1_time + (sys.clock() - t)
- mse = (ground_truth - v1_output):pow(2):mean()
- v1_mse = v1_mse + mse
- v1_psnr = v1_psnr + (10 * (math.log(1.0 / mse) / math.log(10)))
-
- t = sys.clock()
- v2_output = reconstruct.scale(v2_scale, 2.0, input)
- v2_time = v2_time + (sys.clock() - t)
- mse = (ground_truth - v2_output):pow(2):mean()
- v2_mse = v2_mse + mse
- v2_psnr = v2_psnr + (10 * (math.log(1.0 / mse) / math.log(10)))
-
- io.stdout:write(string.format("%d/%d; time: v1=%f, v2=%f, v1/v2=%f; mse: jinc=%f, v1=%f(%f), v2=%f(%f), v1/v2=%f \r",
- i, #x,
- v1_time / i, v2_time / i,
- (v1_time / i) / (v2_time / i),
- jinc_psnr / i,
- v1_psnr / i, (v1_psnr/i) / (jinc_psnr/i),
- v2_psnr / i, (v2_psnr/i) / (jinc_psnr/i),
- (v1_psnr / i) / (v2_psnr / i)))
-
- io.stdout:flush()
- end
- io.stdout:write("\n")
- end
- local function split_data(x, test_size)
- local index = torch.randperm(#x)
- local train_size = #x - test_size
- local train_x = {}
- local valid_x = {}
- for i = 1, train_size do
- train_x[i] = x[index[i]]
- end
- for i = 1, test_size do
- valid_x[i] = x[index[train_size + i]]
- end
- return train_x, valid_x
- end
- local function crop_4x(x)
- local w = x:size(3) % 4
- local h = x:size(2) % 4
- return image.crop(x, 0, 0, x:size(3) - w, x:size(2) - h)
- end
- local function load_data(valid_dir)
- local valid_x = {}
- local files = dir.getfiles(valid_dir, "*.png")
- for i = 1, #files do
- table.insert(valid_x, crop_4x(image_loader.load_byte(files[i])))
- xlua.progress(i, #files)
- end
- return valid_x
- end
- local function noise_main(valid_dir, level)
- local v1_noise = torch.load(path.join(V1_DIR, string.format("noise%d_model.t7", level)), "ascii")
- local v2_noise = torch.load(path.join(V2_DIR, string.format("noise%d_model.t7", level)), "ascii")
- local valid_x = load_data(valid_dir)
- noise_benchmark(valid_x, v1_noise, v2_noise)
- end
- local function scale_main(valid_dir)
- local v1 = torch.load(path.join(V1_DIR, "scale2.0x_model.t7"), "ascii")
- local v2 = torch.load(path.join(V2_DIR, "scale2.0x_model.t7"), "ascii")
- local valid_x = load_data(valid_dir)
- local params = random_params(valid_x, 2)
- scale_benchmark(valid_x, params, v1, v2)
- end
- local function noise_scale_main(valid_dir)
- local v1_noise = torch.load(path.join(V1_DIR, "noise2_model.t7"), "ascii")
- local v1_scale = torch.load(path.join(V1_DIR, "scale2.0x_model.t7"), "ascii")
- local v2_noise = torch.load(path.join(V2_DIR, "noise2_model.t7"), "ascii")
- local v2_scale = torch.load(path.join(V2_DIR, "scale2.0x_model.t7"), "ascii")
- local valid_x = load_data(valid_dir)
- local params = random_params(valid_x, 2)
- noise_scale_benchmark(valid_x, params, v1_noise, v1_scale, v2_noise, v2_scale)
- end
- V1_DIR = "models/anime_style_art_rgb"
- V2_DIR = "models/anime_style_art_rgb5"
- torch.manualSeed(opt.seed)
- cutorch.manualSeed(opt.seed)
- noise_main("./test", 2)
- --scale_main("./test")
- --noise_scale_main("./test")
|