| 1234567891011121314151617181920212223242526272829303132333435363738 | 
							- -- ref: https://en.wikipedia.org/wiki/Huber_loss
 
- local ClippedWeightedHuberCriterion, parent = torch.class('w2nn.ClippedWeightedHuberCriterion','nn.Criterion')
 
- function ClippedWeightedHuberCriterion:__init(w, gamma, clip)
 
-    parent.__init(self)
 
-    self.clip = clip
 
-    self.gamma = gamma or 1.0
 
-    self.weight = w:clone()
 
-    self.diff = torch.Tensor()
 
-    self.diff_abs = torch.Tensor()
 
-    --self.outlier_rate = 0.0
 
-    self.square_loss_buff = torch.Tensor()
 
-    self.linear_loss_buff = torch.Tensor()
 
- end
 
- function ClippedWeightedHuberCriterion:updateOutput(input, target)
 
-    self.diff:resizeAs(input):copy(input)
 
-    self.diff:clamp(self.clip[1], self.clip[2])
 
-    for i = 1, input:size(1) do
 
-       self.diff[i]:add(-1, target[i]):cmul(self.weight)
 
-    end
 
-    self.diff_abs:resizeAs(self.diff):copy(self.diff):abs()
 
-    
 
-    local square_targets = self.diff[torch.lt(self.diff_abs, self.gamma)]
 
-    local linear_targets = self.diff[torch.ge(self.diff_abs, self.gamma)]
 
-    local square_loss = self.square_loss_buff:resizeAs(square_targets):copy(square_targets):pow(2.0):mul(0.5):sum()
 
-    local linear_loss = self.linear_loss_buff:resizeAs(linear_targets):copy(linear_targets):abs():add(-0.5 * self.gamma):mul(self.gamma):sum()
 
-    --self.outlier_rate = linear_targets:nElement() / input:nElement()
 
-    self.output = (square_loss + linear_loss) / input:nElement()
 
-    return self.output
 
- end
 
- function ClippedWeightedHuberCriterion:updateGradInput(input, target)
 
-    local norm = 1.0 / input:nElement()
 
-    self.gradInput:resizeAs(self.diff):copy(self.diff):mul(norm)
 
-    local outlier = torch.ge(self.diff_abs, self.gamma)
 
-    self.gradInput[outlier] = torch.sign(self.diff[outlier]) * self.gamma * norm
 
-    return self.gradInput 
 
- end
 
 
  |