123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- require 'pl'
- require 'cunn'
- local iproc = require 'iproc'
- local gm = {}
- gm.Image = require 'graphicsmagick.Image'
- local data_augmentation = {}
- local function pcacov(x)
- local mean = torch.mean(x, 1)
- local xm = x - torch.ger(torch.ones(x:size(1)), mean:squeeze())
- local c = torch.mm(xm:t(), xm)
- c:div(x:size(1) - 1)
- local ce, cv = torch.symeig(c, 'V')
- return ce, cv
- end
- function data_augmentation.erase(src, p, n, rect_min, rect_max)
- if torch.uniform() < p then
- local src, conversion = iproc.byte2float(src)
- src = src:contiguous():clone()
- local ch = src:size(1)
- local height = src:size(2)
- local width = src:size(3)
- for i = 1, n do
- local r = torch.Tensor(4):uniform():cmul(torch.Tensor({height-1, width-1, rect_max - rect_min, rect_max - rect_min})):int()
- local rect_y1 = r[1] + 1
- local rect_x1 = r[2] + 1
- local rect_h = r[3] + rect_min
- local rect_w = r[4] + rect_min
- local rect_x2 = math.min(rect_x1 + rect_w, width)
- local rect_y2 = math.min(rect_y1 + rect_h, height)
- local sub_rect = src:sub(1, ch, rect_y1, rect_y2, rect_x1, rect_x2)
- for i = 1, ch do
- sub_rect[i]:fill(src[i][rect_y1][rect_x1])
- end
- end
- if conversion then
- src = iproc.float2byte(src)
- end
- return src
- else
- return src
- end
- end
- function data_augmentation.color_noise(src, p, factor)
- factor = factor or 0.1
- if torch.uniform() < p then
- local src, conversion = iproc.byte2float(src)
- local src_t = src:reshape(src:size(1), src:nElement() / src:size(1)):t():contiguous()
- local ce, cv = pcacov(src_t)
- local color_scale = torch.Tensor(3):uniform(1 / (1 + factor), 1 + factor)
-
- pca_space = torch.mm(src_t, cv):t():contiguous()
- for i = 1, 3 do
- pca_space[i]:mul(color_scale[i])
- end
- local dest = torch.mm(pca_space:t(), cv:t()):t():contiguous():resizeAs(src)
- dest:clamp(0.0, 1.0)
- if conversion then
- dest = iproc.float2byte(dest)
- end
- return dest
- else
- return src
- end
- end
- function data_augmentation.overlay(src, p)
- if torch.uniform() < p then
- local r = torch.uniform()
- local src, conversion = iproc.byte2float(src)
- src = src:contiguous()
- local flip = data_augmentation.flip(src)
- flip:mul(r):add(src * (1.0 - r))
- if conversion then
- flip = iproc.float2byte(flip)
- end
- return flip
- else
- return src
- end
- end
- function data_augmentation.unsharp_mask(src, p)
- if torch.uniform() < p then
- local radius = 0 -- auto
- local sigma = torch.uniform(0.5, 1.5)
- local amount = torch.uniform(0.1, 0.9)
- local threshold = torch.uniform(0.0, 0.05)
- local unsharp = gm.Image(src, "RGB", "DHW"):
- unsharpMask(radius, sigma, amount, threshold):
- toTensor("float", "RGB", "DHW")
-
- if src:type() == "torch.ByteTensor" then
- return iproc.float2byte(unsharp)
- else
- return unsharp
- end
- else
- return src
- end
- end
- function data_augmentation.blur(src, p, size, sigma_min, sigma_max)
- size = size or "3"
- filters = utils.split(size, ",")
- for i = 1, #filters do
- local s = tonumber(filters[i])
- filters[i] = s
- end
- if torch.uniform() < p then
- local src, conversion = iproc.byte2float(src)
- local kernel_size = filters[torch.random(1, #filters)]
- local sigma
- if sigma_min == sigma_max then
- sigma = sigma_min
- else
- sigma = torch.uniform(sigma_min, sigma_max)
- end
- local kernel = iproc.gaussian2d(kernel_size, sigma)
- local dest = image.convolve(src, kernel, 'same')
- if conversion then
- dest = iproc.float2byte(dest)
- end
- return dest
- else
- return src
- end
- end
- function data_augmentation.pairwise_scale(x, y, p, scale_min, scale_max)
- if torch.uniform() < p then
- assert(x:size(2) == y:size(2) and x:size(3) == y:size(3))
- local scale = torch.uniform(scale_min, scale_max)
- local h = math.floor(x:size(2) * scale)
- local w = math.floor(x:size(3) * scale)
- local filters = {"Lanczos", "Catrom"}
- local x_filter = filters[torch.random(1, 2)]
- x = iproc.scale(x, w, h, x_filter)
- y = iproc.scale(y, w, h, "Triangle")
- return x, y
- else
- return x, y
- end
- end
- function data_augmentation.pairwise_rotate(x, y, p, r_min, r_max)
- if torch.uniform() < p then
- assert(x:size(2) == y:size(2) and x:size(3) == y:size(3))
- local r = torch.uniform(r_min, r_max) / 360.0 * math.pi
- x = iproc.rotate(x, r)
- y = iproc.rotate(y, r)
- return x, y
- else
- return x, y
- end
- end
- function data_augmentation.pairwise_negate(x, y, p)
- if torch.uniform() < p then
- assert(x:size(2) == y:size(2) and x:size(3) == y:size(3))
- x = iproc.negate(x)
- y = iproc.negate(y)
- return x, y
- else
- return x, y
- end
- end
- function data_augmentation.pairwise_negate_x(x, y, p)
- if torch.uniform() < p then
- assert(x:size(2) == y:size(2) and x:size(3) == y:size(3))
- x = iproc.negate(x)
- return x, y
- else
- return x, y
- end
- end
- function data_augmentation.pairwise_flip(x, y)
- local flip = torch.random(1, 4)
- local tr = torch.random(1, 2)
- local x, conversion = iproc.byte2float(x)
- y = iproc.byte2float(y)
- x = x:contiguous()
- y = y:contiguous()
- if tr == 1 then
- -- pass
- elseif tr == 2 then
- x = x:transpose(2, 3):contiguous()
- y = y:transpose(2, 3):contiguous()
- end
- if flip == 1 then
- x = iproc.hflip(x)
- y = iproc.hflip(y)
- elseif flip == 2 then
- x = iproc.vflip(x)
- y = iproc.vflip(y)
- elseif flip == 3 then
- x = iproc.hflip(iproc.vflip(x))
- y = iproc.hflip(iproc.vflip(y))
- elseif flip == 4 then
- end
- if conversion then
- x = iproc.float2byte(x)
- y = iproc.float2byte(y)
- end
- return x, y
- end
- function data_augmentation.shift_1px(src)
- -- reducing the even/odd issue in nearest neighbor scaler.
- local direction = torch.random(1, 4)
- local x_shift = 0
- local y_shift = 0
- if direction == 1 then
- x_shift = 1
- y_shift = 0
- elseif direction == 2 then
- x_shift = 0
- y_shift = 1
- elseif direction == 3 then
- x_shift = 1
- y_shift = 1
- elseif flip == 4 then
- x_shift = 0
- y_shift = 0
- end
- local w = src:size(3) - x_shift
- local h = src:size(2) - y_shift
- w = w - (w % 4)
- h = h - (h % 4)
- local dest = iproc.crop(src, x_shift, y_shift, x_shift + w, y_shift + h)
- return dest
- end
- function data_augmentation.flip(src)
- local flip = torch.random(1, 4)
- local tr = torch.random(1, 2)
- local src, conversion = iproc.byte2float(src)
- local dest
- src = src:contiguous()
- if tr == 1 then
- -- pass
- elseif tr == 2 then
- src = src:transpose(2, 3):contiguous()
- end
- if flip == 1 then
- dest = iproc.hflip(src)
- elseif flip == 2 then
- dest = iproc.vflip(src)
- elseif flip == 3 then
- dest = iproc.hflip(iproc.vflip(src))
- elseif flip == 4 then
- dest = src
- end
- if conversion then
- dest = iproc.float2byte(dest)
- end
- return dest
- end
- local function test_blur()
- torch.setdefaulttensortype("torch.FloatTensor")
- local image =require 'image'
- local src = image.lena()
- image.display({image = src, min=0, max=1})
- local dest = data_augmentation.blur(src, 1.0, "3,5", 0.5, 0.6)
- image.display({image = dest, min=0, max=1})
- dest = data_augmentation.blur(src, 1.0, "3", 1.0, 1.0)
- image.display({image = dest, min=0, max=1})
- dest = data_augmentation.blur(src, 1.0, "5", 0.75, 0.75)
- image.display({image = dest, min=0, max=1})
- end
- --test_blur()
- return data_augmentation
|