| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 | 
							- local pairwise_utils = require 'pairwise_transform_utils'
 
- local gm = require 'graphicsmagick'
 
- local iproc = require 'iproc'
 
- local pairwise_transform = {}
 
- function pairwise_transform.jpeg_(src, quality, size, offset, n, options)
 
-    local unstable_region_offset = 8
 
-    local y = pairwise_utils.preprocess(src, size, options)
 
-    local x = y
 
-    local factors
 
-    if torch.uniform() < options.jpeg_chroma_subsampling_rate then
 
-       -- YUV 420
 
-       factors = {2.0, 1.0, 1.0}
 
-    else
 
-       -- YUV 444
 
-       factors = {1.0, 1.0, 1.0}
 
-    end
 
-    for i = 1, #quality do
 
-       x = gm.Image(x, "RGB", "DHW")
 
-       local blob, len = x:format("jpeg"):depth(8):samplingFactors(factors):toBlob(quality[i])
 
-       x:fromBlob(blob, len)
 
-       x = x:toTensor("byte", "RGB", "DHW")
 
-    end
 
-    x = iproc.crop(x, unstable_region_offset, unstable_region_offset,
 
- 		  x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)
 
-    y = iproc.crop(y, unstable_region_offset, unstable_region_offset,
 
- 		  y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)
 
-    assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)
 
-    assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))
 
-    
 
-    local batch = {}
 
-    local lowres_y = gm.Image(y, "RGB", "DHW"):
 
-       size(y:size(3) * 0.5, y:size(2) * 0.5, "Box"):
 
-       size(y:size(3), y:size(2), "Box"):
 
-       toTensor(t, "RGB", "DHW")
 
-    local xs, ys, ls = pairwise_utils.flip_augmentation(x, y, lowres_y)
 
-    for i = 1, n do
 
-       local t = (i % #xs) + 1
 
-       local xc, yc = pairwise_utils.active_cropping(xs[t], ys[t], ls[t], size, 1,
 
- 						    options.active_cropping_rate,
 
- 						    options.active_cropping_tries)
 
-       xc = iproc.byte2float(xc)
 
-       yc = iproc.byte2float(yc)
 
-       if options.rgb then
 
-       else
 
- 	 yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
 
- 	 xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
 
-       end
 
-       if torch.uniform() < options.nr_rate then
 
- 	 -- reducing noise
 
- 	 table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
 
-       else
 
- 	 -- ratain useful details
 
- 	 table.insert(batch, {yc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
 
-       end
 
-    end
 
-    return batch
 
- end
 
- function pairwise_transform.jpeg(src, style, level, size, offset, n, options)
 
-    if style == "art" then
 
-       if level == 0 then
 
- 	 return pairwise_transform.jpeg_(src, {torch.random(85, 95)},
 
- 					 size, offset, n, options)
 
-       elseif level == 1 then
 
- 	 return pairwise_transform.jpeg_(src, {torch.random(65, 85)},
 
- 					 size, offset, n, options)
 
-       elseif level == 2 or level == 3 then
 
- 	 -- level 2/3 adjusting by -nr_rate. for level3, -nr_rate=1
 
- 	 local r = torch.uniform()
 
- 	 if r > 0.4 then
 
- 	    return pairwise_transform.jpeg_(src, {torch.random(27, 70)},
 
- 					    size, offset, n, options)
 
- 	 elseif r > 0.1 then
 
- 	    local quality1 = torch.random(37, 70)
 
- 	    local quality2 = quality1 - torch.random(5, 10)
 
- 	    return pairwise_transform.jpeg_(src, {quality1, quality2},
 
- 					    size, offset, n, options)
 
- 	 else
 
- 	    local quality1 = torch.random(52, 70)
 
- 	    local quality2 = quality1 - torch.random(5, 15)
 
- 	    local quality3 = quality1 - torch.random(15, 25)
 
- 	    
 
- 	    return pairwise_transform.jpeg_(src, 
 
- 					    {quality1, quality2, quality3},
 
- 					    size, offset, n, options)
 
- 	 end
 
-       else
 
- 	 error("unknown noise level: " .. level)
 
-       end
 
-    elseif style == "photo" then
 
-       if level == 0 then
 
- 	 return pairwise_transform.jpeg_(src, {torch.random(85, 95)},
 
- 					 size, offset, n,
 
- 					 options)
 
-       else
 
- 	 return pairwise_transform.jpeg_(src, {torch.random(37, 70)},
 
- 					 size, offset, n,
 
- 					 options)
 
-       end
 
-    else
 
-       error("unknown style: " .. style)
 
-    end
 
- end
 
- function pairwise_transform.test_jpeg(src)
 
-    torch.setdefaulttensortype("torch.FloatTensor")
 
-    local options = {random_color_noise_rate = 0.5,
 
- 		    random_half_rate = 0.5,
 
- 		    random_overlay_rate = 0.5,
 
- 		    random_unsharp_mask_rate = 0.5,
 
- 		    jpeg_chroma_subsampling_rate = 0.5,
 
- 		    nr_rate = 1.0,
 
- 		    active_cropping_rate = 0.5,
 
- 		    active_cropping_tries = 10,
 
- 		    max_size = 256,
 
- 		    rgb = true
 
-    }
 
-    local image = require 'image'
 
-    local src = image.lena()
 
-    for i = 1, 9 do
 
-       local xy = pairwise_transform.jpeg(src,
 
- 					 "art",
 
- 					 torch.random(1, 2),
 
- 					 128, 7, 1, options)
 
-       image.display({image = xy[1][1], legend = "y:" .. (i * 10), min=0, max=1})
 
-       image.display({image = xy[1][2], legend = "x:" .. (i * 10), min=0, max=1})
 
-    end
 
- end
 
- return pairwise_transform
 
 
  |