minibatch_adam.lua 2.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. require 'optim'
  2. require 'cutorch'
  3. require 'xlua'
  4. local function minibatch_adam(model, criterion, eval_metric,
  5. train_x, train_y,
  6. config)
  7. local parameters, gradParameters = model:getParameters()
  8. config = config or {}
  9. if config.xEvalCount == nil then
  10. config.xEvalCount = 0
  11. config.learningRate = config.xLearningRate
  12. end
  13. local sum_psnr = 0
  14. local sum_loss = 0
  15. local sum_eval = 0
  16. local count_loss = 0
  17. local batch_size = config.xBatchSize or 32
  18. local shuffle = torch.randperm(train_x:size(1))
  19. local c = 1
  20. local inputs_tmp = torch.Tensor(batch_size,
  21. train_x:size(2), train_x:size(3), train_x:size(4)):zero()
  22. local targets_tmp = torch.Tensor(batch_size,
  23. train_y:size(2)):zero()
  24. local inputs = inputs_tmp:clone():cuda()
  25. local targets = targets_tmp:clone():cuda()
  26. local instance_loss = torch.Tensor(train_x:size(1)):zero()
  27. print("## update")
  28. for t = 1, train_x:size(1), batch_size do
  29. if t + batch_size -1 > train_x:size(1) then
  30. break
  31. end
  32. for i = 1, batch_size do
  33. inputs_tmp[i]:copy(train_x[shuffle[t + i - 1]])
  34. targets_tmp[i]:copy(train_y[shuffle[t + i - 1]])
  35. end
  36. inputs:copy(inputs_tmp)
  37. targets:copy(targets_tmp)
  38. local feval = function(x)
  39. if x ~= parameters then
  40. parameters:copy(x)
  41. end
  42. gradParameters:zero()
  43. local output = model:forward(inputs)
  44. local f = criterion:forward(output, targets)
  45. local se = eval_metric:forward(output, targets)
  46. if config.xInstanceLoss then
  47. assert(eval_metric.instance_loss, "eval metric does not support instalce_loss")
  48. for i = 1, #eval_metric.instance_loss do
  49. instance_loss[shuffle[t + i - 1]] = eval_metric.instance_loss[i]
  50. end
  51. end
  52. sum_psnr = sum_psnr + (10 * math.log10(1 / (se + 1.0e-6)))
  53. sum_eval = sum_eval + se
  54. sum_loss = sum_loss + f
  55. count_loss = count_loss + 1
  56. model:backward(inputs, criterion:backward(output, targets))
  57. return f, gradParameters
  58. end
  59. optim.adam(feval, parameters, config)
  60. config.xEvalCount = config.xEvalCount + batch_size
  61. config.learningRate = config.xLearningRate / (1 + config.xEvalCount * config.xLearningRateDecay)
  62. c = c + 1
  63. if c % 50 == 0 then
  64. collectgarbage()
  65. xlua.progress(t, train_x:size(1))
  66. end
  67. end
  68. xlua.progress(train_x:size(1), train_x:size(1))
  69. return { loss = sum_loss / count_loss, MSE = sum_eval / count_loss, PSNR = sum_psnr / count_loss}, instance_loss
  70. end
  71. return minibatch_adam