| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 | require 'pl'local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()package.path = path.join(path.dirname(__FILE__), "..", "lib", "?.lua;") .. package.pathrequire 'xlua'require 'w2nn'local iproc = require 'iproc'local reconstruct = require 'reconstruct'local image_loader = require 'image_loader'local gm = require 'graphicsmagick'local cmd = torch.CmdLine()cmd:text()cmd:text("waifu2x-benchmark")cmd:text("Options:")cmd:option("-dir", "./data/test", 'test image directory')cmd:option("-model1_dir", "./models/anime_style_art", 'model1 directory')cmd:option("-model2_dir", "./models/anime_style_art_rgb", 'model2 directory')cmd:option("-method", "scale", '(scale|noise)')cmd:option("-filter", "Box", "downscaling filter (Box|Jinc)")cmd:option("-color", "rgb", '(rgb|y)')cmd:option("-noise_level", 1, 'model noise level')cmd:option("-jpeg_quality", 75, 'jpeg quality')cmd:option("-jpeg_times", 1, 'jpeg compression times')cmd:option("-jpeg_quality_down", 5, 'value of jpeg quality to decrease each times')local opt = cmd:parse(arg)torch.setdefaulttensortype('torch.FloatTensor')if cudnn then   cudnn.fastest = true   cudnn.benchmark = falseendlocal function MSE(x1, x2)   return (x1 - x2):pow(2):mean()endlocal function YMSE(x1, x2)   local x1_2 = image.rgb2y(x1)   local x2_2 = image.rgb2y(x2)   return (x1_2 - x2_2):pow(2):mean()endlocal function PSNR(x1, x2)   local mse = MSE(x1, x2)   return 10 * math.log10(1.0 / mse)endlocal function YPSNR(x1, x2)   local mse = YMSE(x1, x2)   return 10 * math.log10(1.0 / mse)endlocal function transform_jpeg(x, opt)   for i = 1, opt.jpeg_times do      jpeg = gm.Image(x, "RGB", "DHW")      jpeg:format("jpeg")      jpeg:samplingFactors({1.0, 1.0, 1.0})      blob, len = jpeg:toBlob(opt.jpeg_quality - (i - 1) * opt.jpeg_quality_down)      jpeg:fromBlob(blob, len)      x = jpeg:toTensor("byte", "RGB", "DHW")   end   return xendlocal function transform_scale(x, opt)   return iproc.scale(x,		      x:size(3) * 0.5,		      x:size(2) * 0.5,		      opt.filter)endlocal function benchmark(opt, x, input_func, model1, model2)   local model1_mse = 0   local model2_mse = 0   local model1_psnr = 0   local model2_psnr = 0      for i = 1, #x do      local ground_truth = x[i]      local input, model1_output, model2_output      input = input_func(ground_truth, opt)      input = input:float():div(255)      ground_truth = ground_truth:float():div(255)            t = sys.clock()      if input:size(3) == ground_truth:size(3) then	 model1_output = reconstruct.image(model1, input)	 model2_output = reconstruct.image(model2, input)      else	 model1_output = reconstruct.scale(model1, 2.0, input)	 model2_output = reconstruct.scale(model2, 2.0, input)      end      if opt.color == "y" then	 model1_mse = model1_mse + YMSE(ground_truth, model1_output)	 model1_psnr = model1_psnr + YPSNR(ground_truth, model1_output)	 model2_mse = model2_mse + YMSE(ground_truth, model2_output)	 model2_psnr = model2_psnr + YPSNR(ground_truth, model2_output)      elseif opt.color == "rgb" then	 model1_mse = model1_mse + MSE(ground_truth, model1_output)	 model1_psnr = model1_psnr + PSNR(ground_truth, model1_output)	 model2_mse = model2_mse + MSE(ground_truth, model2_output)	 model2_psnr = model2_psnr + PSNR(ground_truth, model2_output)      else	 error("Unknown color: " .. opt.color)      end            io.stdout:write(	 string.format("%d/%d; model1_mse=%f, model2_mse=%f, model1_psnr=%f, model2_psnr=%f \r",		       i, #x,		       model1_mse / i, model2_mse / i,		       model1_psnr / i, model2_psnr / i	 )      )      io.stdout:flush()   end   io.stdout:write("\n")endlocal function load_data(test_dir)   local test_x = {}   local files = dir.getfiles(test_dir, "*.*")   for i = 1, #files do      table.insert(test_x, iproc.crop_mod4(image_loader.load_byte(files[i])))      xlua.progress(i, #files)   end   return test_xendprint(opt)if opt.method == "scale" then   local model1 = torch.load(path.join(opt.model1_dir, "scale2.0x_model.t7"), "ascii")   local model2 = torch.load(path.join(opt.model2_dir, "scale2.0x_model.t7"), "ascii")   local test_x = load_data(opt.dir)   benchmark(opt, test_x, transform_scale, model1, model2)elseif opt.method == "noise" then   local model1 = torch.load(path.join(opt.model1_dir, string.format("noise%d_model.t7", opt.noise_level)), "ascii")   local model2 = torch.load(path.join(opt.model2_dir, string.format("noise%d_model.t7", opt.noise_level)), "ascii")   local test_x = load_data(opt.dir)   benchmark(opt, test_x, transform_jpeg, model1, model2)end
 |