srcnn.lua 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564
  1. require 'w2nn'
  2. -- ref: http://arxiv.org/abs/1502.01852
  3. -- ref: http://arxiv.org/abs/1501.00092
  4. local srcnn = {}
  5. function nn.SpatialConvolutionMM:reset(stdv)
  6. local fin = self.kW * self.kH * self.nInputPlane
  7. local fout = self.kW * self.kH * self.nOutputPlane
  8. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  9. self.weight:normal(0, stdv)
  10. self.bias:zero()
  11. end
  12. function nn.SpatialFullConvolution:reset(stdv)
  13. local fin = self.kW * self.kH * self.nInputPlane
  14. local fout = self.kW * self.kH * self.nOutputPlane
  15. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  16. self.weight:normal(0, stdv)
  17. self.bias:zero()
  18. end
  19. if cudnn and cudnn.SpatialConvolution then
  20. function cudnn.SpatialConvolution:reset(stdv)
  21. local fin = self.kW * self.kH * self.nInputPlane
  22. local fout = self.kW * self.kH * self.nOutputPlane
  23. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  24. self.weight:normal(0, stdv)
  25. self.bias:zero()
  26. end
  27. function cudnn.SpatialFullConvolution:reset(stdv)
  28. local fin = self.kW * self.kH * self.nInputPlane
  29. local fout = self.kW * self.kH * self.nOutputPlane
  30. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  31. self.weight:normal(0, stdv)
  32. self.bias:zero()
  33. end
  34. end
  35. function nn.SpatialConvolutionMM:clearState()
  36. if self.gradWeight then
  37. self.gradWeight:resize(self.nOutputPlane, self.nInputPlane * self.kH * self.kW):zero()
  38. end
  39. if self.gradBias then
  40. self.gradBias:resize(self.nOutputPlane):zero()
  41. end
  42. return nn.utils.clear(self, 'finput', 'fgradInput', '_input', '_gradOutput', 'output', 'gradInput')
  43. end
  44. function srcnn.channels(model)
  45. if model.w2nn_channels ~= nil then
  46. return model.w2nn_channels
  47. else
  48. return model:get(model:size() - 1).weight:size(1)
  49. end
  50. end
  51. function srcnn.backend(model)
  52. local conv = model:findModules("cudnn.SpatialConvolution")
  53. local fullconv = model:findModules("cudnn.SpatialFullConvolution")
  54. if #conv > 0 or #fullconv > 0 then
  55. return "cudnn"
  56. else
  57. return "cunn"
  58. end
  59. end
  60. function srcnn.color(model)
  61. local ch = srcnn.channels(model)
  62. if ch == 3 then
  63. return "rgb"
  64. else
  65. return "y"
  66. end
  67. end
  68. function srcnn.name(model)
  69. if model.w2nn_arch_name ~= nil then
  70. return model.w2nn_arch_name
  71. else
  72. local conv = model:findModules("nn.SpatialConvolutionMM")
  73. if #conv == 0 then
  74. conv = model:findModules("cudnn.SpatialConvolution")
  75. end
  76. if #conv == 7 then
  77. return "vgg_7"
  78. elseif #conv == 12 then
  79. return "vgg_12"
  80. else
  81. error("unsupported model")
  82. end
  83. end
  84. end
  85. function srcnn.offset_size(model)
  86. if model.w2nn_offset ~= nil then
  87. return model.w2nn_offset
  88. else
  89. local name = srcnn.name(model)
  90. if name:match("vgg_") then
  91. local conv = model:findModules("nn.SpatialConvolutionMM")
  92. if #conv == 0 then
  93. conv = model:findModules("cudnn.SpatialConvolution")
  94. end
  95. local offset = 0
  96. for i = 1, #conv do
  97. offset = offset + (conv[i].kW - 1) / 2
  98. end
  99. return math.floor(offset)
  100. else
  101. error("unsupported model")
  102. end
  103. end
  104. end
  105. function srcnn.scale_factor(model)
  106. if model.w2nn_scale_factor ~= nil then
  107. return model.w2nn_scale_factor
  108. else
  109. local name = srcnn.name(model)
  110. if name == "upconv_7" then
  111. return 2
  112. elseif name == "upconv_8_4x" then
  113. return 4
  114. else
  115. return 1
  116. end
  117. end
  118. end
  119. local function SpatialConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  120. if backend == "cunn" then
  121. return nn.SpatialConvolutionMM(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  122. elseif backend == "cudnn" then
  123. return cudnn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  124. else
  125. error("unsupported backend:" .. backend)
  126. end
  127. end
  128. srcnn.SpatialConvolution = SpatialConvolution
  129. local function SpatialFullConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
  130. if backend == "cunn" then
  131. return nn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
  132. elseif backend == "cudnn" then
  133. return cudnn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  134. else
  135. error("unsupported backend:" .. backend)
  136. end
  137. end
  138. srcnn.SpatialFullConvolution = SpatialFullConvolution
  139. local function ReLU(backend)
  140. if backend == "cunn" then
  141. return nn.ReLU(true)
  142. elseif backend == "cudnn" then
  143. return cudnn.ReLU(true)
  144. else
  145. error("unsupported backend:" .. backend)
  146. end
  147. end
  148. srcnn.ReLU = ReLU
  149. local function SpatialMaxPooling(backend, kW, kH, dW, dH, padW, padH)
  150. if backend == "cunn" then
  151. return nn.SpatialMaxPooling(kW, kH, dW, dH, padW, padH)
  152. elseif backend == "cudnn" then
  153. return cudnn.SpatialMaxPooling(kW, kH, dW, dH, padW, padH)
  154. else
  155. error("unsupported backend:" .. backend)
  156. end
  157. end
  158. srcnn.SpatialMaxPooling = SpatialMaxPooling
  159. -- VGG style net(7 layers)
  160. function srcnn.vgg_7(backend, ch)
  161. local model = nn.Sequential()
  162. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  163. model:add(nn.LeakyReLU(0.1, true))
  164. model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
  165. model:add(nn.LeakyReLU(0.1, true))
  166. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  167. model:add(nn.LeakyReLU(0.1, true))
  168. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  169. model:add(nn.LeakyReLU(0.1, true))
  170. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  171. model:add(nn.LeakyReLU(0.1, true))
  172. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  173. model:add(nn.LeakyReLU(0.1, true))
  174. model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
  175. model:add(w2nn.InplaceClip01())
  176. model:add(nn.View(-1):setNumInputDims(3))
  177. model.w2nn_arch_name = "vgg_7"
  178. model.w2nn_offset = 7
  179. model.w2nn_scale_factor = 1
  180. model.w2nn_channels = ch
  181. --model:cuda()
  182. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  183. return model
  184. end
  185. -- VGG style net(12 layers)
  186. function srcnn.vgg_12(backend, ch)
  187. local model = nn.Sequential()
  188. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  189. model:add(nn.LeakyReLU(0.1, true))
  190. model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
  191. model:add(nn.LeakyReLU(0.1, true))
  192. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  193. model:add(nn.LeakyReLU(0.1, true))
  194. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  195. model:add(nn.LeakyReLU(0.1, true))
  196. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  197. model:add(nn.LeakyReLU(0.1, true))
  198. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  199. model:add(nn.LeakyReLU(0.1, true))
  200. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  201. model:add(nn.LeakyReLU(0.1, true))
  202. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  203. model:add(nn.LeakyReLU(0.1, true))
  204. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  205. model:add(nn.LeakyReLU(0.1, true))
  206. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  207. model:add(nn.LeakyReLU(0.1, true))
  208. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  209. model:add(nn.LeakyReLU(0.1, true))
  210. model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
  211. model:add(w2nn.InplaceClip01())
  212. model:add(nn.View(-1):setNumInputDims(3))
  213. model.w2nn_arch_name = "vgg_12"
  214. model.w2nn_offset = 12
  215. model.w2nn_scale_factor = 1
  216. model.w2nn_resize = false
  217. model.w2nn_channels = ch
  218. --model:cuda()
  219. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  220. return model
  221. end
  222. -- Dilated Convolution (7 layers)
  223. function srcnn.dilated_7(backend, ch)
  224. local model = nn.Sequential()
  225. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  226. model:add(nn.LeakyReLU(0.1, true))
  227. model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
  228. model:add(nn.LeakyReLU(0.1, true))
  229. model:add(nn.SpatialDilatedConvolution(32, 64, 3, 3, 1, 1, 0, 0, 2, 2))
  230. model:add(nn.LeakyReLU(0.1, true))
  231. model:add(nn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 0, 0, 2, 2))
  232. model:add(nn.LeakyReLU(0.1, true))
  233. model:add(nn.SpatialDilatedConvolution(64, 128, 3, 3, 1, 1, 0, 0, 4, 4))
  234. model:add(nn.LeakyReLU(0.1, true))
  235. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  236. model:add(nn.LeakyReLU(0.1, true))
  237. model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
  238. model:add(w2nn.InplaceClip01())
  239. model:add(nn.View(-1):setNumInputDims(3))
  240. model.w2nn_arch_name = "dilated_7"
  241. model.w2nn_offset = 12
  242. model.w2nn_scale_factor = 1
  243. model.w2nn_resize = false
  244. model.w2nn_channels = ch
  245. --model:cuda()
  246. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  247. return model
  248. end
  249. -- Upconvolution
  250. function srcnn.upconv_7(backend, ch)
  251. local model = nn.Sequential()
  252. model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))
  253. model:add(nn.LeakyReLU(0.1, true))
  254. model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))
  255. model:add(nn.LeakyReLU(0.1, true))
  256. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  257. model:add(nn.LeakyReLU(0.1, true))
  258. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  259. model:add(nn.LeakyReLU(0.1, true))
  260. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  261. model:add(nn.LeakyReLU(0.1, true))
  262. model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
  263. model:add(nn.LeakyReLU(0.1, true))
  264. model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
  265. model:add(w2nn.InplaceClip01())
  266. model:add(nn.View(-1):setNumInputDims(3))
  267. model.w2nn_arch_name = "upconv_7"
  268. model.w2nn_offset = 14
  269. model.w2nn_scale_factor = 2
  270. model.w2nn_resize = true
  271. model.w2nn_channels = ch
  272. return model
  273. end
  274. -- large version of upconv_7
  275. -- This model able to beat upconv_7 (PSNR: +0.3 ~ +0.8) but this model is 2x slower than upconv_7.
  276. function srcnn.upconv_7l(backend, ch)
  277. local model = nn.Sequential()
  278. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  279. model:add(nn.LeakyReLU(0.1, true))
  280. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  281. model:add(nn.LeakyReLU(0.1, true))
  282. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  283. model:add(nn.LeakyReLU(0.1, true))
  284. model:add(SpatialConvolution(backend, 128, 192, 3, 3, 1, 1, 0, 0))
  285. model:add(nn.LeakyReLU(0.1, true))
  286. model:add(SpatialConvolution(backend, 192, 256, 3, 3, 1, 1, 0, 0))
  287. model:add(nn.LeakyReLU(0.1, true))
  288. model:add(SpatialConvolution(backend, 256, 512, 3, 3, 1, 1, 0, 0))
  289. model:add(nn.LeakyReLU(0.1, true))
  290. model:add(SpatialFullConvolution(backend, 512, ch, 4, 4, 2, 2, 3, 3):noBias())
  291. model:add(w2nn.InplaceClip01())
  292. model:add(nn.View(-1):setNumInputDims(3))
  293. model.w2nn_arch_name = "upconv_7l"
  294. model.w2nn_offset = 14
  295. model.w2nn_scale_factor = 2
  296. model.w2nn_resize = true
  297. model.w2nn_channels = ch
  298. --model:cuda()
  299. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  300. return model
  301. end
  302. -- layerwise linear blending with skip connections
  303. -- Note: PSNR: upconv_7 < skiplb_7 < upconv_7l
  304. function srcnn.skiplb_7(backend, ch)
  305. local function skip(backend, i, o)
  306. local con = nn.Concat(2)
  307. local conv = nn.Sequential()
  308. conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 1, 1))
  309. conv:add(nn.LeakyReLU(0.1, true))
  310. -- depth concat
  311. con:add(conv)
  312. con:add(nn.Identity()) -- skip
  313. return con
  314. end
  315. local model = nn.Sequential()
  316. model:add(skip(backend, ch, 16))
  317. model:add(skip(backend, 16+ch, 32))
  318. model:add(skip(backend, 32+16+ch, 64))
  319. model:add(skip(backend, 64+32+16+ch, 128))
  320. model:add(skip(backend, 128+64+32+16+ch, 128))
  321. model:add(skip(backend, 128+128+64+32+16+ch, 256))
  322. -- input of last layer = [all layerwise output(contains input layer)].flatten
  323. model:add(SpatialFullConvolution(backend, 256+128+128+64+32+16+ch, ch, 4, 4, 2, 2, 3, 3):noBias()) -- linear blend
  324. model:add(w2nn.InplaceClip01())
  325. model:add(nn.View(-1):setNumInputDims(3))
  326. model.w2nn_arch_name = "skiplb_7"
  327. model.w2nn_offset = 14
  328. model.w2nn_scale_factor = 2
  329. model.w2nn_resize = true
  330. model.w2nn_channels = ch
  331. --model:cuda()
  332. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  333. return model
  334. end
  335. -- dilated convolution + deconvolution
  336. -- Note: This model is not better than upconv_7. Maybe becuase of under-fitting.
  337. function srcnn.dilated_upconv_7(backend, ch)
  338. local model = nn.Sequential()
  339. model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))
  340. model:add(nn.LeakyReLU(0.1, true))
  341. model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))
  342. model:add(nn.LeakyReLU(0.1, true))
  343. model:add(nn.SpatialDilatedConvolution(32, 64, 3, 3, 1, 1, 0, 0, 2, 2))
  344. model:add(nn.LeakyReLU(0.1, true))
  345. model:add(nn.SpatialDilatedConvolution(64, 128, 3, 3, 1, 1, 0, 0, 2, 2))
  346. model:add(nn.LeakyReLU(0.1, true))
  347. model:add(nn.SpatialDilatedConvolution(128, 128, 3, 3, 1, 1, 0, 0, 2, 2))
  348. model:add(nn.LeakyReLU(0.1, true))
  349. model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
  350. model:add(nn.LeakyReLU(0.1, true))
  351. model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
  352. model:add(w2nn.InplaceClip01())
  353. model:add(nn.View(-1):setNumInputDims(3))
  354. model.w2nn_arch_name = "dilated_upconv_7"
  355. model.w2nn_offset = 20
  356. model.w2nn_scale_factor = 2
  357. model.w2nn_resize = true
  358. model.w2nn_channels = ch
  359. --model:cuda()
  360. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  361. return model
  362. end
  363. -- ref: https://arxiv.org/abs/1609.04802
  364. -- note: no batch-norm, no zero-paading
  365. function srcnn.srresnet_2x(backend, ch)
  366. local function resblock(backend)
  367. local seq = nn.Sequential()
  368. local con = nn.ConcatTable()
  369. local conv = nn.Sequential()
  370. conv:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  371. conv:add(ReLU(backend))
  372. conv:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  373. conv:add(ReLU(backend))
  374. con:add(conv)
  375. con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding
  376. seq:add(con)
  377. seq:add(nn.CAddTable())
  378. return seq
  379. end
  380. local model = nn.Sequential()
  381. --model:add(skip(backend, ch, 64 - ch))
  382. model:add(SpatialConvolution(backend, ch, 64, 3, 3, 1, 1, 0, 0))
  383. model:add(nn.LeakyReLU(0.1, true))
  384. model:add(resblock(backend))
  385. model:add(resblock(backend))
  386. model:add(resblock(backend))
  387. model:add(resblock(backend))
  388. model:add(resblock(backend))
  389. model:add(resblock(backend))
  390. model:add(SpatialFullConvolution(backend, 64, 64, 4, 4, 2, 2, 2, 2))
  391. model:add(ReLU(backend))
  392. model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
  393. model:add(w2nn.InplaceClip01())
  394. --model:add(nn.View(-1):setNumInputDims(3))
  395. model.w2nn_arch_name = "srresnet_2x"
  396. model.w2nn_offset = 28
  397. model.w2nn_scale_factor = 2
  398. model.w2nn_resize = true
  399. model.w2nn_channels = ch
  400. --model:cuda()
  401. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  402. return model
  403. end
  404. -- large version of srresnet_2x. It's current best model but slow.
  405. function srcnn.resnet_14l(backend, ch)
  406. local function resblock(backend, i, o)
  407. local seq = nn.Sequential()
  408. local con = nn.ConcatTable()
  409. local conv = nn.Sequential()
  410. conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 0, 0))
  411. conv:add(nn.LeakyReLU(0.1, true))
  412. conv:add(SpatialConvolution(backend, o, o, 3, 3, 1, 1, 0, 0))
  413. conv:add(nn.LeakyReLU(0.1, true))
  414. con:add(conv)
  415. if i == o then
  416. con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding
  417. else
  418. local seq = nn.Sequential()
  419. seq:add(SpatialConvolution(backend, i, o, 1, 1, 1, 1, 0, 0))
  420. seq:add(nn.SpatialZeroPadding(-2, -2, -2, -2))
  421. con:add(seq)
  422. end
  423. seq:add(con)
  424. seq:add(nn.CAddTable())
  425. return seq
  426. end
  427. local model = nn.Sequential()
  428. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  429. model:add(nn.LeakyReLU(0.1, true))
  430. model:add(resblock(backend, 32, 64))
  431. model:add(resblock(backend, 64, 64))
  432. model:add(resblock(backend, 64, 128))
  433. model:add(resblock(backend, 128, 128))
  434. model:add(resblock(backend, 128, 256))
  435. model:add(resblock(backend, 256, 256))
  436. model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
  437. model:add(w2nn.InplaceClip01())
  438. model:add(nn.View(-1):setNumInputDims(3))
  439. model.w2nn_arch_name = "resnet_14l"
  440. model.w2nn_offset = 28
  441. model.w2nn_scale_factor = 2
  442. model.w2nn_resize = true
  443. model.w2nn_channels = ch
  444. --model:cuda()
  445. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  446. return model
  447. end
  448. -- for segmentation
  449. function srcnn.fcn_v1(backend, ch)
  450. -- input_size = 120
  451. local model = nn.Sequential()
  452. --i = 120
  453. --model:cuda()
  454. --print(model:forward(torch.Tensor(32, ch, i, i):uniform():cuda()):size())
  455. model:add(SpatialConvolution(backend, ch, 32, 5, 5, 2, 2, 0, 0))
  456. model:add(nn.LeakyReLU(0.1, true))
  457. model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
  458. model:add(nn.LeakyReLU(0.1, true))
  459. model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
  460. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  461. model:add(nn.LeakyReLU(0.1, true))
  462. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  463. model:add(nn.LeakyReLU(0.1, true))
  464. model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
  465. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  466. model:add(nn.LeakyReLU(0.1, true))
  467. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  468. model:add(nn.LeakyReLU(0.1, true))
  469. model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
  470. model:add(SpatialConvolution(backend, 128, 256, 1, 1, 1, 1, 0, 0))
  471. model:add(nn.LeakyReLU(0.1, true))
  472. model:add(nn.Dropout(0.5, false, true))
  473. model:add(SpatialFullConvolution(backend, 256, 128, 2, 2, 2, 2, 0, 0))
  474. model:add(nn.LeakyReLU(0.1, true))
  475. model:add(SpatialFullConvolution(backend, 128, 128, 2, 2, 2, 2, 0, 0))
  476. model:add(nn.LeakyReLU(0.1, true))
  477. model:add(SpatialConvolution(backend, 128, 64, 3, 3, 1, 1, 0, 0))
  478. model:add(nn.LeakyReLU(0.1, true))
  479. model:add(SpatialFullConvolution(backend, 64, 64, 2, 2, 2, 2, 0, 0))
  480. model:add(nn.LeakyReLU(0.1, true))
  481. model:add(SpatialConvolution(backend, 64, 32, 3, 3, 1, 1, 0, 0))
  482. model:add(nn.LeakyReLU(0.1, true))
  483. model:add(SpatialFullConvolution(backend, 32, ch, 4, 4, 2, 2, 3, 3))
  484. model:add(w2nn.InplaceClip01())
  485. model:add(nn.View(-1):setNumInputDims(3))
  486. model.w2nn_arch_name = "fcn_v1"
  487. model.w2nn_offset = 36
  488. model.w2nn_scale_factor = 1
  489. model.w2nn_channels = ch
  490. model.w2nn_input_size = 120
  491. --model.w2nn_gcn = true
  492. return model
  493. end
  494. function srcnn.create(model_name, backend, color)
  495. model_name = model_name or "vgg_7"
  496. backend = backend or "cunn"
  497. color = color or "rgb"
  498. local ch = 3
  499. if color == "rgb" then
  500. ch = 3
  501. elseif color == "y" then
  502. ch = 1
  503. else
  504. error("unsupported color: " .. color)
  505. end
  506. if srcnn[model_name] then
  507. local model = srcnn[model_name](backend, ch)
  508. assert(model.w2nn_offset % model.w2nn_scale_factor == 0)
  509. return model
  510. else
  511. error("unsupported model_name: " .. model_name)
  512. end
  513. end
  514. --[[
  515. local model = srcnn.fcn_v1("cunn", 3):cuda()
  516. print(model:forward(torch.Tensor(1, 3, 108, 108):zero():cuda()):size())
  517. print(model)
  518. --]]
  519. return srcnn