12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- require 'image'
- local iproc = require 'iproc'
- local data_augmentation = require 'data_augmentation'
- local pairwise_transform_utils = {}
- function pairwise_transform_utils.random_half(src, p, filters)
- if torch.uniform() < p then
- local filter = filters[torch.random(1, #filters)]
- return iproc.scale(src, src:size(3) * 0.5, src:size(2) * 0.5, filter)
- else
- return src
- end
- end
- function pairwise_transform_utils.crop_if_large(src, max_size)
- local tries = 4
- if src:size(2) > max_size and src:size(3) > max_size then
- local rect
- for i = 1, tries do
- local yi = torch.random(0, src:size(2) - max_size)
- local xi = torch.random(0, src:size(3) - max_size)
- rect = iproc.crop(src, xi, yi, xi + max_size, yi + max_size)
- -- ignore simple background
- if rect:float():std() >= 0 then
- break
- end
- end
- return rect
- else
- return src
- end
- end
- function pairwise_transform_utils.preprocess(src, crop_size, options)
- local dest = src
- dest = pairwise_transform_utils.random_half(dest, options.random_half_rate, options.downsampling_filters)
- dest = pairwise_transform_utils.crop_if_large(dest, math.max(crop_size * 2, options.max_size))
- dest = data_augmentation.flip(dest)
- dest = data_augmentation.color_noise(dest, options.random_color_noise_rate)
- dest = data_augmentation.overlay(dest, options.random_overlay_rate)
- dest = data_augmentation.unsharp_mask(dest, options.random_unsharp_mask_rate)
- dest = data_augmentation.shift_1px(dest)
-
- return dest
- end
- function pairwise_transform_utils.active_cropping(x, y, lowres_y, size, scale, p, tries)
- assert("x:size == y:size", x:size(2) * scale == y:size(2) and x:size(3) * scale == y:size(3))
- assert("crop_size % scale == 0", size % scale == 0)
- local r = torch.uniform()
- local t = "float"
- if x:type() == "torch.ByteTensor" then
- t = "byte"
- end
- if p < r then
- local xi = torch.random(0, x:size(3) - (size + 1))
- local yi = torch.random(0, x:size(2) - (size + 1))
- local yc = iproc.crop(y, xi * scale, yi * scale, xi * scale + size, yi * scale + size)
- local xc = iproc.crop(x, xi, yi, xi + size / scale, yi + size / scale)
- return xc, yc
- else
- local best_se = 0.0
- local best_xi, best_yi
- local m = torch.FloatTensor(y:size(1), size, size)
- for i = 1, tries do
- local xi = torch.random(0, x:size(3) - (size + 1)) * scale
- local yi = torch.random(0, x:size(2) - (size + 1)) * scale
- local xc = iproc.crop(y, xi, yi, xi + size, yi + size)
- local lc = iproc.crop(lowres_y, xi, yi, xi + size, yi + size)
- local xcf = iproc.byte2float(xc)
- local lcf = iproc.byte2float(lc)
- local se = m:copy(xcf):add(-1.0, lcf):pow(2):sum()
- if se >= best_se then
- best_xi = xi
- best_yi = yi
- best_se = se
- end
- end
- local yc = iproc.crop(y, best_xi, best_yi, best_xi + size, best_yi + size)
- local xc = iproc.crop(x, best_xi / scale, best_yi / scale, best_xi / scale + size / scale, best_yi / scale + size / scale)
- return xc, yc
- end
- end
- return pairwise_transform_utils
|