pairwise_transform_jpeg.lua 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121
  1. local pairwise_utils = require 'pairwise_transform_utils'
  2. local gm = require 'graphicsmagick'
  3. local iproc = require 'iproc'
  4. local pairwise_transform = {}
  5. function pairwise_transform.jpeg_(src, quality, size, offset, n, options)
  6. local unstable_region_offset = 8
  7. local y = pairwise_utils.preprocess(src, size, options)
  8. local x = y
  9. for i = 1, #quality do
  10. x = gm.Image(x, "RGB", "DHW")
  11. x:format("jpeg"):depth(8)
  12. if torch.uniform() < options.jpeg_chroma_subsampling_rate then
  13. -- YUV 420
  14. x:samplingFactors({2.0, 1.0, 1.0})
  15. else
  16. -- YUV 444
  17. x:samplingFactors({1.0, 1.0, 1.0})
  18. end
  19. local blob, len = x:toBlob(quality[i])
  20. x:fromBlob(blob, len)
  21. x = x:toTensor("byte", "RGB", "DHW")
  22. end
  23. x = iproc.crop(x, unstable_region_offset, unstable_region_offset,
  24. x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)
  25. y = iproc.crop(y, unstable_region_offset, unstable_region_offset,
  26. y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)
  27. assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)
  28. assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))
  29. local batch = {}
  30. local lowres_y = gm.Image(y, "RGB", "DHW"):
  31. size(y:size(3) * 0.5, y:size(2) * 0.5, "Box"):
  32. size(y:size(3), y:size(2), "Box"):
  33. toTensor(t, "RGB", "DHW")
  34. for i = 1, n do
  35. local xc, yc = pairwise_utils.active_cropping(x, y, lowres_y, size, 1,
  36. options.active_cropping_rate,
  37. options.active_cropping_tries)
  38. xc = iproc.byte2float(xc)
  39. yc = iproc.byte2float(yc)
  40. if options.rgb then
  41. else
  42. yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
  43. xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
  44. end
  45. if torch.uniform() < options.nr_rate then
  46. -- reducing noise
  47. table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
  48. else
  49. -- ratain useful details
  50. table.insert(batch, {yc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
  51. end
  52. end
  53. return batch
  54. end
  55. function pairwise_transform.jpeg(src, style, level, size, offset, n, options)
  56. if style == "art" then
  57. if level == 1 then
  58. return pairwise_transform.jpeg_(src, {torch.random(65, 85)},
  59. size, offset, n, options)
  60. elseif level == 2 or level == 3 then
  61. -- level 2/3 adjusting by -nr_rate. for level3, -nr_rate=1
  62. local r = torch.uniform()
  63. if r > 0.6 then
  64. return pairwise_transform.jpeg_(src, {torch.random(27, 70)},
  65. size, offset, n, options)
  66. elseif r > 0.3 then
  67. local quality1 = torch.random(37, 70)
  68. local quality2 = quality1 - torch.random(5, 10)
  69. return pairwise_transform.jpeg_(src, {quality1, quality2},
  70. size, offset, n, options)
  71. else
  72. local quality1 = torch.random(52, 70)
  73. local quality2 = quality1 - torch.random(5, 15)
  74. local quality3 = quality1 - torch.random(15, 25)
  75. return pairwise_transform.jpeg_(src,
  76. {quality1, quality2, quality3},
  77. size, offset, n, options)
  78. end
  79. else
  80. error("unknown noise level: " .. level)
  81. end
  82. elseif style == "photo" then
  83. -- level adjusting by -nr_rate
  84. return pairwise_transform.jpeg_(src, {torch.random(30, 70)},
  85. size, offset, n,
  86. options)
  87. else
  88. error("unknown style: " .. style)
  89. end
  90. end
  91. function pairwise_transform.test_jpeg(src)
  92. torch.setdefaulttensortype("torch.FloatTensor")
  93. local options = {random_color_noise_rate = 0.5,
  94. random_half_rate = 0.5,
  95. random_overlay_rate = 0.5,
  96. random_unsharp_mask_rate = 0.5,
  97. jpeg_chroma_subsampling_rate = 0.5,
  98. nr_rate = 1.0,
  99. active_cropping_rate = 0.5,
  100. active_cropping_tries = 10,
  101. max_size = 256,
  102. rgb = true
  103. }
  104. local image = require 'image'
  105. local src = image.lena()
  106. for i = 1, 9 do
  107. local xy = pairwise_transform.jpeg(src,
  108. "art",
  109. torch.random(1, 2),
  110. 128, 7, 1, options)
  111. image.display({image = xy[1][1], legend = "y:" .. (i * 10), min=0, max=1})
  112. image.display({image = xy[1][2], legend = "x:" .. (i * 10), min=0, max=1})
  113. end
  114. end
  115. return pairwise_transform