| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 | 
							- require 'w2nn'
 
- -- ref: http://arxiv.org/abs/1502.01852
 
- -- ref: http://arxiv.org/abs/1501.00092
 
- local srcnn = {}
 
- function nn.SpatialConvolutionMM:reset(stdv)
 
-    local fin = self.kW * self.kH * self.nInputPlane
 
-    local fout = self.kW * self.kH * self.nOutputPlane
 
-    stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
 
-    self.weight:normal(0, stdv)
 
-    self.bias:zero()
 
- end
 
- function nn.SpatialFullConvolution:reset(stdv)
 
-    local fin = self.kW * self.kH * self.nInputPlane
 
-    local fout = self.kW * self.kH * self.nOutputPlane
 
-    stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
 
-    self.weight:normal(0, stdv)
 
-    self.bias:zero()
 
- end
 
- if cudnn and cudnn.SpatialConvolution then
 
-    function cudnn.SpatialConvolution:reset(stdv)
 
-       local fin = self.kW * self.kH * self.nInputPlane
 
-       local fout = self.kW * self.kH * self.nOutputPlane
 
-       stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
 
-       self.weight:normal(0, stdv)
 
-       self.bias:zero()
 
-    end
 
-    function cudnn.SpatialFullConvolution:reset(stdv)
 
-       local fin = self.kW * self.kH * self.nInputPlane
 
-       local fout = self.kW * self.kH * self.nOutputPlane
 
-       stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
 
-       self.weight:normal(0, stdv)
 
-       self.bias:zero()
 
-    end
 
- end
 
- function nn.SpatialConvolutionMM:clearState()
 
-    if self.gradWeight then
 
-       self.gradWeight:resize(self.nOutputPlane, self.nInputPlane * self.kH * self.kW):zero()
 
-    end
 
-    if self.gradBias then
 
-       self.gradBias:resize(self.nOutputPlane):zero()
 
-    end
 
-    return nn.utils.clear(self, 'finput', 'fgradInput', '_input', '_gradOutput', 'output', 'gradInput')
 
- end
 
- function srcnn.channels(model)
 
-    if model.w2nn_channels ~= nil then
 
-       return model.w2nn_channels
 
-    else
 
-       return model:get(model:size() - 1).weight:size(1)
 
-    end
 
- end
 
- function srcnn.backend(model)
 
-    local conv = model:findModules("cudnn.SpatialConvolution")
 
-    local fullconv = model:findModules("cudnn.SpatialFullConvolution")
 
-    if #conv > 0 or #fullconv > 0 then
 
-       return "cudnn"
 
-    else
 
-       return "cunn"
 
-    end
 
- end
 
- function srcnn.color(model)
 
-    local ch = srcnn.channels(model)
 
-    if ch == 3 then
 
-       return "rgb"
 
-    else
 
-       return "y"
 
-    end
 
- end
 
- function srcnn.name(model)
 
-    if model.w2nn_arch_name ~= nil then
 
-       return model.w2nn_arch_name
 
-    else
 
-       local conv = model:findModules("nn.SpatialConvolutionMM")
 
-       if #conv == 0 then
 
- 	 conv = model:findModules("cudnn.SpatialConvolution")
 
-       end
 
-       if #conv == 7 then
 
- 	 return "vgg_7"
 
-       elseif #conv == 12 then
 
- 	 return "vgg_12"
 
-       else
 
- 	 error("unsupported model")
 
-       end
 
-    end
 
- end
 
- function srcnn.offset_size(model)
 
-    if model.w2nn_offset ~= nil then
 
-       return model.w2nn_offset
 
-    else
 
-       local name = srcnn.name(model)
 
-       if name:match("vgg_") then
 
- 	 local conv = model:findModules("nn.SpatialConvolutionMM")
 
- 	 if #conv == 0 then
 
- 	    conv = model:findModules("cudnn.SpatialConvolution")
 
- 	 end
 
- 	 local offset = 0
 
- 	 for i = 1, #conv do
 
- 	    offset = offset + (conv[i].kW - 1) / 2
 
- 	 end
 
- 	 return math.floor(offset)
 
-       else
 
- 	 error("unsupported model")
 
-       end
 
-    end
 
- end
 
- function srcnn.scale_factor(model)
 
-    if model.w2nn_scale_factor ~= nil then
 
-       return model.w2nn_scale_factor
 
-    else
 
-       local name = srcnn.name(model)
 
-       if name == "upconv_7" then
 
- 	 return 2
 
-       elseif name == "upconv_8_4x" then
 
- 	 return 4
 
-       else
 
- 	 return 1
 
-       end
 
-    end
 
- end
 
- local function SpatialConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
 
-    if backend == "cunn" then
 
-       return nn.SpatialConvolutionMM(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
 
-    elseif backend == "cudnn" then
 
-       return cudnn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
 
-    else
 
-       error("unsupported backend:" .. backend)
 
-    end
 
- end
 
- local function SpatialFullConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
 
-    if backend == "cunn" then
 
-       return nn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
 
-    elseif backend == "cudnn" then
 
-       return cudnn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
 
-    else
 
-       error("unsupported backend:" .. backend)
 
-    end
 
- end
 
- -- VGG style net(7 layers)
 
- function srcnn.vgg_7(backend, ch)
 
-    local model = nn.Sequential()
 
-    model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.View(-1):setNumInputDims(3))
 
-    model.w2nn_arch_name = "vgg_7"
 
-    model.w2nn_offset = 7
 
-    model.w2nn_scale_factor = 1
 
-    model.w2nn_channels = ch
 
-    --model:cuda()
 
-    --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
 
-    
 
-    return model
 
- end
 
- -- VGG style net(12 layers)
 
- function srcnn.vgg_12(backend, ch)
 
-    local model = nn.Sequential()
 
-    model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.View(-1):setNumInputDims(3))
 
-    model.w2nn_arch_name = "vgg_12"
 
-    model.w2nn_offset = 12
 
-    model.w2nn_scale_factor = 1
 
-    model.w2nn_resize = false
 
-    model.w2nn_channels = ch
 
-    --model:cuda()
 
-    --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
 
-    
 
-    return model
 
- end
 
- -- Dilated Convolution (7 layers)
 
- function srcnn.dilated_7(backend, ch)
 
-    local model = nn.Sequential()
 
-    model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(nn.SpatialDilatedConvolution(32, 64, 3, 3, 1, 1, 0, 0, 2, 2))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(nn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 0, 0, 2, 2))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(nn.SpatialDilatedConvolution(64, 128, 3, 3, 1, 1, 0, 0, 4, 4))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.View(-1):setNumInputDims(3))
 
-    model.w2nn_arch_name = "dilated_7"
 
-    model.w2nn_offset = 12
 
-    model.w2nn_scale_factor = 1
 
-    model.w2nn_resize = false
 
-    model.w2nn_channels = ch
 
-    --model:cuda()
 
-    --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
 
-    
 
-    return model
 
- end
 
- -- Upconvolution
 
- function srcnn.upconv_7(backend, ch)
 
-    local model = nn.Sequential()
 
-    model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
 
-    model:add(nn.LeakyReLU(0.1, true))
 
-    model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3))
 
-    model:add(nn.View(-1):setNumInputDims(3))
 
-    model.w2nn_arch_name = "upconv_7"
 
-    model.w2nn_offset = 14
 
-    model.w2nn_scale_factor = 2
 
-    model.w2nn_resize = true
 
-    model.w2nn_channels = ch
 
-    --model:cuda()
 
-    --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
 
-    return model
 
- end
 
- function srcnn.create(model_name, backend, color)
 
-    model_name = model_name or "vgg_7"
 
-    backend = backend or "cunn"
 
-    color = color or "rgb"
 
-    local ch = 3
 
-    if color == "rgb" then
 
-       ch = 3
 
-    elseif color == "y" then
 
-       ch = 1
 
-    else
 
-       error("unsupported color: " .. color)
 
-    end
 
-    if srcnn[model_name] then
 
-       local model = srcnn[model_name](backend, ch)
 
-       assert(model.w2nn_offset % model.w2nn_scale_factor == 0)
 
-       return model
 
-    else
 
-       error("unsupported model_name: " .. model_name)
 
-    end
 
- end
 
- --local model = srcnn.upconv_6("cunn", 3):cuda()
 
- --print(model:forward(torch.Tensor(1, 3, 64, 64):zero():cuda()):size())
 
- return srcnn
 
 
  |