| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 | 
							- local pairwise_utils = require 'pairwise_transform_utils'
 
- local iproc = require 'iproc'
 
- local gm = require 'graphicsmagick'
 
- local pairwise_transform = {}
 
- local function add_jpeg_noise_(x, quality, options)
 
-    for i = 1, #quality do
 
-       x = gm.Image(x, "RGB", "DHW")
 
-       x:format("jpeg"):depth(8)
 
-       if torch.uniform() < options.jpeg_chroma_subsampling_rate then
 
- 	 -- YUV 420
 
- 	 x:samplingFactors({2.0, 1.0, 1.0})
 
-       else
 
- 	 -- YUV 444
 
- 	 x:samplingFactors({1.0, 1.0, 1.0})
 
-       end
 
-       local blob, len = x:toBlob(quality[i])
 
-       x:fromBlob(blob, len)
 
-       x = x:toTensor("byte", "RGB", "DHW")
 
-    end
 
-    return x
 
- end
 
- local function add_jpeg_noise(src, style, level, options)
 
-    if style == "art" then
 
-       if level == 1 then
 
- 	 return add_jpeg_noise_(src, {torch.random(65, 85)}, options)
 
-       elseif level == 2 or level == 3 then
 
- 	 -- level 2/3 adjusting by -nr_rate. for level3, -nr_rate=1
 
- 	 local r = torch.uniform()
 
- 	 if r > 0.4 then
 
- 	    return add_jpeg_noise_(src, {torch.random(27, 70)}, options)
 
- 	 elseif r > 0.1 then
 
- 	    local quality1 = torch.random(37, 70)
 
- 	    local quality2 = quality1 - torch.random(5, 10)
 
- 	    return add_jpeg_noise_(src, {quality1, quality2}, options)
 
- 	 else
 
- 	    local quality1 = torch.random(52, 70)
 
- 	    local quality2 = quality1 - torch.random(5, 15)
 
- 	    local quality3 = quality1 - torch.random(15, 25)
 
- 	    return add_jpeg_noise_(src, {quality1, quality2, quality3}, options)
 
- 	 end
 
-       else
 
- 	 error("unknown noise level: " .. level)
 
-       end
 
-    elseif style == "photo" then
 
-       -- level adjusting by -nr_rate
 
-       return add_jpeg_noise_(src, {torch.random(30, 70)}, options)
 
-    else
 
-       error("unknown style: " .. style)
 
-    end
 
- end
 
- function pairwise_transform.jpeg_scale(src, scale, style, noise_level, size, offset, n, options)
 
-    local filters = options.downsampling_filters
 
-    if options.data.filters then
 
-       filters = options.data.filters
 
-    end
 
-    local unstable_region_offset = 8
 
-    local downsampling_filter = filters[torch.random(1, #filters)]
 
-    local blur = torch.uniform(options.resize_blur_min, options.resize_blur_max)
 
-    local y = pairwise_utils.preprocess(src, size, options)
 
-    assert(y:size(2) % 4 == 0 and y:size(3) % 4 == 0)
 
-    local down_scale = 1.0 / scale
 
-    local x
 
-    local small = iproc.scale(y, y:size(3) * down_scale,
 
- 			     y:size(2) * down_scale, downsampling_filter, blur)
 
-    if options.x_upsampling then
 
-       x = iproc.scale(small, y:size(3), y:size(2), "Box")
 
-    else
 
-       x = small
 
-    end
 
-    local scale_inner = scale
 
-    if options.x_upsampling then
 
-       scale_inner = 1
 
-    end
 
-    x = iproc.crop(x, unstable_region_offset, unstable_region_offset,
 
- 		  x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)
 
-    y = iproc.crop(y, unstable_region_offset * scale_inner, unstable_region_offset * scale_inner,
 
- 		  y:size(3) - unstable_region_offset * scale_inner, y:size(2) - unstable_region_offset * scale_inner)
 
-    if options.x_upsampling then
 
-       assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)
 
-       assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))
 
-    else
 
-       assert(x:size(1) == y:size(1) and x:size(2) * scale == y:size(2) and x:size(3) * scale == y:size(3))
 
-    end
 
-    local batch = {}
 
-    local lowres_y = gm.Image(y, "RGB", "DHW"):
 
-       size(y:size(3) * 0.5, y:size(2) * 0.5, "Box"):
 
-       size(y:size(3), y:size(2), "Box"):
 
-       toTensor(t, "RGB", "DHW")
 
-    local xs = {}
 
-    local ns = {}
 
-    local ys = {}
 
-    local x_noise = add_jpeg_noise(x, style, noise_level, options)
 
-    local lowreses = {}
 
-    for j = 1, 2 do
 
-       -- TTA
 
-       local xi, yi, ri
 
-       if j == 1 then
 
- 	 xi = x
 
- 	 ni = x_noise
 
- 	 yi = y
 
- 	 ri = lowres_y
 
-       else
 
- 	 xi = x:transpose(2, 3):contiguous()
 
- 	 ni = x_noise:transpose(2, 3):contiguous()
 
- 	 yi = y:transpose(2, 3):contiguous()
 
- 	 ri = lowres_y:transpose(2, 3):contiguous()
 
-       end
 
-       local xv = image.vflip(xi)
 
-       local nv = image.vflip(ni)
 
-       local yv = image.vflip(yi)
 
-       local rv = image.vflip(ri)
 
-       table.insert(xs, xi)
 
-       table.insert(ns, ni)
 
-       table.insert(ys, yi)
 
-       table.insert(lowreses, ri)
 
-       table.insert(xs, xv)
 
-       table.insert(ns, nv)
 
-       table.insert(ys, yv)
 
-       table.insert(lowreses, rv)
 
-       table.insert(xs, image.hflip(xi))
 
-       table.insert(ns, image.hflip(ni))
 
-       table.insert(ys, image.hflip(yi))
 
-       table.insert(lowreses, image.hflip(ri))
 
-       table.insert(xs, image.hflip(xv))
 
-       table.insert(ns, image.hflip(nv))
 
-       table.insert(ys, image.hflip(yv))
 
-       table.insert(lowreses, image.hflip(rv))
 
-    end
 
-    for i = 1, n do
 
-       local t = (i % #xs) + 1
 
-       local xc, yc
 
-       if torch.uniform() < options.nr_rate then
 
- 	 -- scale + noise reduction
 
- 	 xc, yc = pairwise_utils.active_cropping(ns[t], ys[t], lowreses[t],
 
- 						 size,
 
- 						 scale_inner,
 
- 						 options.active_cropping_rate,
 
- 						 options.active_cropping_tries)
 
-       else
 
- 	 -- scale
 
- 	 xc, yc = pairwise_utils.active_cropping(xs[t], ys[t], lowreses[t],
 
- 						 size,
 
- 						 scale_inner,
 
- 						 options.active_cropping_rate,
 
- 						 options.active_cropping_tries)
 
-       end
 
-       xc = iproc.byte2float(xc)
 
-       yc = iproc.byte2float(yc)
 
-       if options.rgb then
 
-       else
 
- 	 yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
 
- 	 xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
 
-       end
 
-       table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
 
-    end
 
-    return batch
 
- end
 
- function pairwise_transform.test_jpeg_scale(src)
 
-    torch.setdefaulttensortype("torch.FloatTensor")
 
-    local options = {random_color_noise_rate = 0.5,
 
- 		    random_half_rate = 0.5,
 
- 		    random_overlay_rate = 0.5,
 
- 		    random_unsharp_mask_rate = 0.5,
 
- 		    active_cropping_rate = 0.5,
 
- 		    active_cropping_tries = 10,
 
- 		    max_size = 256,
 
- 		    x_upsampling = false,
 
- 		    downsampling_filters = "Box",
 
- 		    rgb = true
 
-    }
 
-    local image = require 'image'
 
-    local src = image.lena()
 
-    for i = 1, 10 do
 
-       local xy = pairwise_transform.jpeg_scale(src, 2.0, "art", 1, 128, 7, 1, options)
 
-       image.display({image = xy[1][1], legend = "y:" .. (i * 10), min = 0, max = 1})
 
-       image.display({image = xy[1][2], legend = "x:" .. (i * 10), min = 0, max = 1})
 
-    end
 
- end
 
- return pairwise_transform
 
 
  |