reconstruct.lua 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381
  1. require 'image'
  2. local iproc = require 'iproc'
  3. local srcnn = require 'srcnn'
  4. local function reconstruct_y(model, x, offset, block_size)
  5. if x:dim() == 2 then
  6. x = x:reshape(1, x:size(1), x:size(2))
  7. end
  8. local new_x = torch.Tensor():resizeAs(x):zero()
  9. local output_size = block_size - offset * 2
  10. local input = torch.CudaTensor(1, 1, block_size, block_size)
  11. for i = 1, x:size(2), output_size do
  12. for j = 1, x:size(3), output_size do
  13. if i + block_size - 1 <= x:size(2) and j + block_size - 1 <= x:size(3) then
  14. local index = {{},
  15. {i, i + block_size - 1},
  16. {j, j + block_size - 1}}
  17. input:copy(x[index])
  18. local output = model:forward(input):view(1, output_size, output_size)
  19. local output_index = {{},
  20. {i + offset, offset + i + output_size - 1},
  21. {offset + j, offset + j + output_size - 1}}
  22. new_x[output_index]:copy(output)
  23. end
  24. end
  25. end
  26. return new_x
  27. end
  28. local function reconstruct_rgb(model, x, offset, block_size)
  29. local new_x = torch.Tensor():resizeAs(x):zero()
  30. local output_size = block_size - offset * 2
  31. local input = torch.CudaTensor(1, 3, block_size, block_size)
  32. for i = 1, x:size(2), output_size do
  33. for j = 1, x:size(3), output_size do
  34. if i + block_size - 1 <= x:size(2) and j + block_size - 1 <= x:size(3) then
  35. local index = {{},
  36. {i, i + block_size - 1},
  37. {j, j + block_size - 1}}
  38. input:copy(x[index])
  39. local output = model:forward(input):view(3, output_size, output_size)
  40. local output_index = {{},
  41. {i + offset, offset + i + output_size - 1},
  42. {offset + j, offset + j + output_size - 1}}
  43. new_x[output_index]:copy(output)
  44. end
  45. end
  46. end
  47. return new_x
  48. end
  49. local function reconstruct_rgb_with_scale(model, x, scale, offset, block_size)
  50. local new_x = torch.Tensor(x:size(1), x:size(2) * scale, x:size(3) * scale):zero()
  51. local input_block_size = block_size / scale
  52. local output_block_size = block_size
  53. local output_size = output_block_size - offset * 2
  54. local output_size_in_input = input_block_size - offset
  55. local input = torch.CudaTensor(1, 3, input_block_size, input_block_size)
  56. for i = 1, x:size(2), output_size_in_input do
  57. for j = 1, new_x:size(3), output_size_in_input do
  58. if i + input_block_size - 1 <= x:size(2) and j + input_block_size - 1 <= x:size(3) then
  59. local index = {{},
  60. {i, i + input_block_size - 1},
  61. {j, j + input_block_size - 1}}
  62. input:copy(x[index])
  63. local output = model:forward(input):view(3, output_size, output_size)
  64. local ii = (i - 1) * scale + 1
  65. local jj = (j - 1) * scale + 1
  66. local output_index = {{}, { ii , ii + output_size - 1 },
  67. { jj, jj + output_size - 1}}
  68. new_x[output_index]:copy(output)
  69. end
  70. end
  71. end
  72. return new_x
  73. end
  74. local reconstruct = {}
  75. function reconstruct.is_rgb(model)
  76. if srcnn.channels(model) == 3 then
  77. -- 3ch RGB
  78. return true
  79. else
  80. -- 1ch Y
  81. return false
  82. end
  83. end
  84. function reconstruct.offset_size(model)
  85. return srcnn.offset_size(model)
  86. end
  87. function reconstruct.no_resize(model)
  88. return srcnn.has_resize(model)
  89. end
  90. function reconstruct.image_y(model, x, offset, block_size)
  91. block_size = block_size or 128
  92. local output_size = block_size - offset * 2
  93. local h_blocks = math.floor(x:size(2) / output_size) +
  94. ((x:size(2) % output_size == 0 and 0) or 1)
  95. local w_blocks = math.floor(x:size(3) / output_size) +
  96. ((x:size(3) % output_size == 0 and 0) or 1)
  97. local h = offset + h_blocks * output_size + offset
  98. local w = offset + w_blocks * output_size + offset
  99. local pad_h1 = offset
  100. local pad_w1 = offset
  101. local pad_h2 = (h - offset) - x:size(2)
  102. local pad_w2 = (w - offset) - x:size(3)
  103. x = image.rgb2yuv(iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2))
  104. local y = reconstruct_y(model, x[1], offset, block_size)
  105. y[torch.lt(y, 0)] = 0
  106. y[torch.gt(y, 1)] = 1
  107. x[1]:copy(y)
  108. local output = image.yuv2rgb(iproc.crop(x,
  109. pad_w1, pad_h1,
  110. x:size(3) - pad_w2, x:size(2) - pad_h2))
  111. output[torch.lt(output, 0)] = 0
  112. output[torch.gt(output, 1)] = 1
  113. x = nil
  114. y = nil
  115. collectgarbage()
  116. return output
  117. end
  118. function reconstruct.scale_y(model, scale, x, offset, block_size, upsampling_filter)
  119. upsampling_filter = upsampling_filter or "Box"
  120. block_size = block_size or 128
  121. local x_lanczos
  122. if reconstruct.no_resize(model) then
  123. x_lanczos = x:clone()
  124. else
  125. x_lanczos = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Lanczos")
  126. x = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, upsampling_filter)
  127. end
  128. if x:size(2) * x:size(3) > 2048*2048 then
  129. collectgarbage()
  130. end
  131. local output_size = block_size - offset * 2
  132. local h_blocks = math.floor(x:size(2) / output_size) +
  133. ((x:size(2) % output_size == 0 and 0) or 1)
  134. local w_blocks = math.floor(x:size(3) / output_size) +
  135. ((x:size(3) % output_size == 0 and 0) or 1)
  136. local h = offset + h_blocks * output_size + offset
  137. local w = offset + w_blocks * output_size + offset
  138. local pad_h1 = offset
  139. local pad_w1 = offset
  140. local pad_h2 = (h - offset) - x:size(2)
  141. local pad_w2 = (w - offset) - x:size(3)
  142. x = image.rgb2yuv(iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2))
  143. x_lanczos = image.rgb2yuv(iproc.padding(x_lanczos, pad_w1, pad_w2, pad_h1, pad_h2))
  144. local y = reconstruct_y(model, x[1], offset, block_size)
  145. y[torch.lt(y, 0)] = 0
  146. y[torch.gt(y, 1)] = 1
  147. x_lanczos[1]:copy(y)
  148. local output = image.yuv2rgb(iproc.crop(x_lanczos,
  149. pad_w1, pad_h1,
  150. x_lanczos:size(3) - pad_w2, x_lanczos:size(2) - pad_h2))
  151. output[torch.lt(output, 0)] = 0
  152. output[torch.gt(output, 1)] = 1
  153. x = nil
  154. x_lanczos = nil
  155. y = nil
  156. collectgarbage()
  157. return output
  158. end
  159. function reconstruct.image_rgb(model, x, offset, block_size)
  160. block_size = block_size or 128
  161. local output_size = block_size - offset * 2
  162. local h_blocks = math.floor(x:size(2) / output_size) +
  163. ((x:size(2) % output_size == 0 and 0) or 1)
  164. local w_blocks = math.floor(x:size(3) / output_size) +
  165. ((x:size(3) % output_size == 0 and 0) or 1)
  166. local h = offset + h_blocks * output_size + offset
  167. local w = offset + w_blocks * output_size + offset
  168. local pad_h1 = offset
  169. local pad_w1 = offset
  170. local pad_h2 = (h - offset) - x:size(2)
  171. local pad_w2 = (w - offset) - x:size(3)
  172. x = iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2)
  173. if x:size(2) * x:size(3) > 2048*2048 then
  174. collectgarbage()
  175. end
  176. local y = reconstruct_rgb(model, x, offset, block_size)
  177. local output = iproc.crop(y,
  178. pad_w1, pad_h1,
  179. y:size(3) - pad_w2, y:size(2) - pad_h2)
  180. output[torch.lt(output, 0)] = 0
  181. output[torch.gt(output, 1)] = 1
  182. x = nil
  183. y = nil
  184. collectgarbage()
  185. return output
  186. end
  187. function reconstruct.scale_rgb(model, scale, x, offset, block_size, upsampling_filter)
  188. if reconstruct.no_resize(model) then
  189. block_size = block_size or 128
  190. local input_block_size = block_size / scale
  191. local x_w = x:size(3)
  192. local x_h = x:size(2)
  193. local process_size = input_block_size - offset * 2
  194. -- TODO: under construction!! bug in 4x
  195. local h_blocks = math.floor(x_h / process_size) + 2
  196. -- ((x_h % process_size == 0 and 0) or 1)
  197. local w_blocks = math.floor(x_w / process_size) + 2
  198. -- ((x_w % process_size == 0 and 0) or 1)
  199. local h = offset + (h_blocks * process_size) + offset
  200. local w = offset + (w_blocks * process_size) + offset
  201. local pad_h1 = offset
  202. local pad_w1 = offset
  203. local pad_h2 = (h - offset) - x:size(2)
  204. local pad_w2 = (w - offset) - x:size(3)
  205. x = iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2)
  206. if x:size(2) * x:size(3) > 2048*2048 then
  207. collectgarbage()
  208. end
  209. local y
  210. y = reconstruct_rgb_with_scale(model, x, scale, offset, block_size)
  211. local output = iproc.crop(y,
  212. pad_w1, pad_h1,
  213. pad_w1 + x_w * scale, pad_h1 + x_h * scale)
  214. output[torch.lt(output, 0)] = 0
  215. output[torch.gt(output, 1)] = 1
  216. x = nil
  217. y = nil
  218. collectgarbage()
  219. return output
  220. else
  221. upsampling_filter = upsampling_filter or "Box"
  222. block_size = block_size or 128
  223. x = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, upsampling_filter)
  224. if x:size(2) * x:size(3) > 2048*2048 then
  225. collectgarbage()
  226. end
  227. local output_size = block_size - offset * 2
  228. local h_blocks = math.floor(x:size(2) / output_size) +
  229. ((x:size(2) % output_size == 0 and 0) or 1)
  230. local w_blocks = math.floor(x:size(3) / output_size) +
  231. ((x:size(3) % output_size == 0 and 0) or 1)
  232. local h = offset + h_blocks * output_size + offset
  233. local w = offset + w_blocks * output_size + offset
  234. local pad_h1 = offset
  235. local pad_w1 = offset
  236. local pad_h2 = (h - offset) - x:size(2)
  237. local pad_w2 = (w - offset) - x:size(3)
  238. x = iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2)
  239. if x:size(2) * x:size(3) > 2048*2048 then
  240. collectgarbage()
  241. end
  242. local y
  243. y = reconstruct_rgb(model, x, offset, block_size)
  244. local output = iproc.crop(y,
  245. pad_w1, pad_h1,
  246. y:size(3) - pad_w2, y:size(2) - pad_h2)
  247. output[torch.lt(output, 0)] = 0
  248. output[torch.gt(output, 1)] = 1
  249. x = nil
  250. y = nil
  251. collectgarbage()
  252. return output
  253. end
  254. end
  255. function reconstruct.image(model, x, block_size)
  256. local i2rgb = false
  257. if x:size(1) == 1 then
  258. local new_x = torch.Tensor(3, x:size(2), x:size(3))
  259. new_x[1]:copy(x)
  260. new_x[2]:copy(x)
  261. new_x[3]:copy(x)
  262. x = new_x
  263. i2rgb = true
  264. end
  265. if reconstruct.is_rgb(model) then
  266. x = reconstruct.image_rgb(model, x,
  267. reconstruct.offset_size(model), block_size)
  268. else
  269. x = reconstruct.image_y(model, x,
  270. reconstruct.offset_size(model), block_size)
  271. end
  272. if i2rgb then
  273. x = image.rgb2y(x)
  274. end
  275. return x
  276. end
  277. function reconstruct.scale(model, scale, x, block_size, upsampling_filter)
  278. local i2rgb = false
  279. if x:size(1) == 1 then
  280. local new_x = torch.Tensor(3, x:size(2), x:size(3))
  281. new_x[1]:copy(x)
  282. new_x[2]:copy(x)
  283. new_x[3]:copy(x)
  284. x = new_x
  285. i2rgb = true
  286. end
  287. if reconstruct.is_rgb(model) then
  288. x = reconstruct.scale_rgb(model, scale, x,
  289. reconstruct.offset_size(model),
  290. block_size,
  291. upsampling_filter)
  292. else
  293. x = reconstruct.scale_y(model, scale, x,
  294. reconstruct.offset_size(model),
  295. block_size,
  296. upsampling_filter)
  297. end
  298. if i2rgb then
  299. x = image.rgb2y(x)
  300. end
  301. return x
  302. end
  303. local function tta(f, model, x, block_size)
  304. local average = nil
  305. local offset = reconstruct.offset_size(model)
  306. for i = 1, 4 do
  307. local flip_f, iflip_f
  308. if i == 1 then
  309. flip_f = function (a) return a end
  310. iflip_f = function (a) return a end
  311. elseif i == 2 then
  312. flip_f = image.vflip
  313. iflip_f = image.vflip
  314. elseif i == 3 then
  315. flip_f = image.hflip
  316. iflip_f = image.hflip
  317. elseif i == 4 then
  318. flip_f = function (a) return image.hflip(image.vflip(a)) end
  319. iflip_f = function (a) return image.vflip(image.hflip(a)) end
  320. end
  321. for j = 1, 2 do
  322. local tr_f, itr_f
  323. if j == 1 then
  324. tr_f = function (a) return a end
  325. itr_f = function (a) return a end
  326. elseif j == 2 then
  327. tr_f = function(a) return a:transpose(2, 3):contiguous() end
  328. itr_f = function(a) return a:transpose(2, 3):contiguous() end
  329. end
  330. local out = itr_f(iflip_f(f(model, flip_f(tr_f(x)),
  331. offset, block_size)))
  332. if not average then
  333. average = out
  334. else
  335. average:add(out)
  336. end
  337. end
  338. end
  339. return average:div(8.0)
  340. end
  341. function reconstruct.image_tta(model, x, block_size)
  342. if reconstruct.is_rgb(model) then
  343. return tta(reconstruct.image_rgb, model, x, block_size)
  344. else
  345. return tta(reconstruct.image_y, model, x, block_size)
  346. end
  347. end
  348. function reconstruct.scale_tta(model, scale, x, block_size, upsampling_filter)
  349. if reconstruct.is_rgb(model) then
  350. local f = function (model, x, offset, block_size)
  351. return reconstruct.scale_rgb(model, scale, x, offset, block_size, upsampling_filter)
  352. end
  353. return tta(f, model, x, block_size)
  354. else
  355. local f = function (model, x, offset, block_size)
  356. return reconstruct.scale_y(model, scale, x, offset, block_size, upsampling_filter)
  357. end
  358. return tta(f, model, x, block_size)
  359. end
  360. end
  361. return reconstruct