| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 | local RandomBinaryCriterion, parent = torch.class('w2nn.RandomBinaryCriterion','nn.Criterion')local function create_filters(ch, n, k)   local filter = w2nn.RandomBinaryConvolution(ch, n, k, k)   -- channel identify   for i = 1, ch do      filter.weight[i]:fill(0)      filter.weight[i][i][math.floor(k/2)+1][math.floor(k/2)+1] = 1   end   return filterendfunction RandomBinaryCriterion:__init(ch, n, k)   parent.__init(self)   self.gamma = 0.1   self.n = n or 32   self.k = k or 3   self.ch = ch   self.filter1 = create_filters(self.ch, self.n, self.k)   self.filter2 = self.filter1:clone()   self.diff = torch.Tensor()   self.diff_abs = torch.Tensor()   self.square_loss_buff = torch.Tensor()   self.linear_loss_buff = torch.Tensor()   self.input = torch.Tensor()   self.target = torch.Tensor()endfunction RandomBinaryCriterion:updateOutput(input, target)   if input:dim() == 2 then      local k = math.sqrt(input:size(2) / self.ch)      input = input:reshape(input:size(1), self.ch, k, k)   end   if target:dim() == 2 then      local k = math.sqrt(target:size(2) / self.ch)      target = target:reshape(target:size(1), self.ch, k, k)   end   self.input:resizeAs(input):copy(input):clamp(0, 1)   self.target:resizeAs(target):copy(target):clamp(0, 1)   local lb1 = self.filter1:forward(self.input)   local lb2 = self.filter2:forward(self.target)   -- huber loss   self.diff:resizeAs(lb1):copy(lb1)   for i = 1, lb1:size(1) do      self.diff[i]:add(-1, lb2[i])   end   self.diff_abs:resizeAs(self.diff):copy(self.diff):abs()      local square_targets = self.diff[torch.lt(self.diff_abs, self.gamma)]   local linear_targets = self.diff[torch.ge(self.diff_abs, self.gamma)]   local square_loss = self.square_loss_buff:resizeAs(square_targets):copy(square_targets):pow(2.0):mul(0.5):sum()   local linear_loss = self.linear_loss_buff:resizeAs(linear_targets):copy(linear_targets):abs():add(-0.5 * self.gamma):mul(self.gamma):sum()   --self.outlier_rate = linear_targets:nElement() / input:nElement()   self.output = (square_loss + linear_loss) / lb1:nElement()   return self.outputendfunction RandomBinaryCriterion:updateGradInput(input, target)   local d2 = false   if input:dim() == 2 then      d2 = true      local k = math.sqrt(input:size(2) / self.ch)      input = input:reshape(input:size(1), self.ch, k, k)   end   local norm = self.n / self.input:nElement()   self.gradInput:resizeAs(self.diff):copy(self.diff):mul(norm)   local outlier = torch.ge(self.diff_abs, self.gamma)   self.gradInput[outlier] = torch.sign(self.diff[outlier]) * self.gamma * norm   local grad_input = self.filter1:updateGradInput(input, self.gradInput)   if d2 then      grad_input = grad_input:reshape(grad_input:size(1), grad_input:size(2) * grad_input:size(3) * grad_input:size(4))   end   return grad_inputend
 |