waifu2x.lua 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126
  1. local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
  2. package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path
  3. require 'sys'
  4. require 'pl'
  5. require 'w2nn'
  6. local iproc = require 'iproc'
  7. local reconstruct = require 'reconstruct'
  8. local image_loader = require 'image_loader'
  9. torch.setdefaulttensortype('torch.FloatTensor')
  10. local function convert_image(opt)
  11. local x, alpha = image_loader.load_float(opt.i)
  12. local new_x = nil
  13. local t = sys.clock()
  14. if opt.o == "(auto)" then
  15. local name = path.basename(opt.i)
  16. local e = path.extension(name)
  17. local base = name:sub(0, name:len() - e:len())
  18. opt.o = path.join(path.dirname(opt.i), string.format("%s(%s).png", base, opt.m))
  19. end
  20. if opt.m == "noise" then
  21. local model = torch.load(path.join(opt.model_dir, ("noise%d_model.t7"):format(opt.noise_level)), "ascii")
  22. --local srcnn = require 'lib/srcnn'
  23. --local model = srcnn.waifu2x("rgb"):cuda()
  24. model:evaluate()
  25. new_x = reconstruct.image(model, x, opt.crop_size)
  26. elseif opt.m == "scale" then
  27. local model = torch.load(path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale)), "ascii")
  28. model:evaluate()
  29. new_x = reconstruct.scale(model, opt.scale, x, opt.crop_size)
  30. elseif opt.m == "noise_scale" then
  31. local noise_model = torch.load(path.join(opt.model_dir, ("noise%d_model.t7"):format(opt.noise_level)), "ascii")
  32. local scale_model = torch.load(path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale)), "ascii")
  33. noise_model:evaluate()
  34. scale_model:evaluate()
  35. x = reconstruct.image(noise_model, x)
  36. new_x = reconstruct.scale(scale_model, opt.scale, x, opt.crop_size)
  37. else
  38. error("undefined method:" .. opt.method)
  39. end
  40. image_loader.save_png(opt.o, new_x, alpha)
  41. print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
  42. end
  43. local function convert_frames(opt)
  44. local noise1_model = torch.load(path.join(opt.model_dir, "noise1_model.t7"), "ascii")
  45. local noise2_model = torch.load(path.join(opt.model_dir, "noise2_model.t7"), "ascii")
  46. local scale_model = torch.load(path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale)), "ascii")
  47. noise1_model:evaluate()
  48. noise2_model:evaluate()
  49. scale_model:evaluate()
  50. local fp = io.open(opt.l)
  51. local count = 0
  52. local lines = {}
  53. for line in fp:lines() do
  54. table.insert(lines, line)
  55. end
  56. fp:close()
  57. for i = 1, #lines do
  58. if opt.resume == 0 or path.exists(string.format(opt.o, i)) == false then
  59. local x, alpha = image_loader.load_float(lines[i])
  60. local new_x = nil
  61. if opt.m == "noise" and opt.noise_level == 1 then
  62. new_x = reconstruct.image(noise1_model, x, opt.crop_size)
  63. elseif opt.m == "noise" and opt.noise_level == 2 then
  64. new_x = reconstruct.image(noise2_model, x)
  65. elseif opt.m == "scale" then
  66. new_x = reconstruct.scale(scale_model, opt.scale, x, opt.crop_size)
  67. elseif opt.m == "noise_scale" and opt.noise_level == 1 then
  68. x = reconstruct.image(noise1_model, x)
  69. new_x = reconstruct.scale(scale_model, opt.scale, x, opt.crop_size)
  70. elseif opt.m == "noise_scale" and opt.noise_level == 2 then
  71. x = reconstruct.image(noise2_model, x)
  72. new_x = reconstruct.scale(scale_model, opt.scale, x, opt.crop_size)
  73. else
  74. error("undefined method:" .. opt.method)
  75. end
  76. local output = nil
  77. if opt.o == "(auto)" then
  78. local name = path.basename(lines[i])
  79. local e = path.extension(name)
  80. local base = name:sub(0, name:len() - e:len())
  81. output = path.join(path.dirname(opt.i), string.format("%s(%s).png", base, opt.m))
  82. else
  83. output = string.format(opt.o, i)
  84. end
  85. image_loader.save_png(output, new_x, alpha)
  86. xlua.progress(i, #lines)
  87. if i % 10 == 0 then
  88. collectgarbage()
  89. end
  90. else
  91. xlua.progress(i, #lines)
  92. end
  93. end
  94. end
  95. local function waifu2x()
  96. local cmd = torch.CmdLine()
  97. cmd:text()
  98. cmd:text("waifu2x")
  99. cmd:text("Options:")
  100. cmd:option("-i", "images/miku_small.png", 'path of the input image')
  101. cmd:option("-l", "", 'path of the image-list')
  102. cmd:option("-scale", 2, 'scale factor')
  103. cmd:option("-o", "(auto)", 'path of the output file')
  104. cmd:option("-model_dir", "./models/anime_style_art_rgb", 'model directory')
  105. cmd:option("-m", "noise_scale", 'method (noise|scale|noise_scale)')
  106. cmd:option("-noise_level", 1, '(1|2)')
  107. cmd:option("-crop_size", 128, 'patch size per process')
  108. cmd:option("-resume", 0, "skip existing files (0|1)")
  109. cmd:option("-thread", -1, "number of CPU threads")
  110. local opt = cmd:parse(arg)
  111. if opt.thread > 0 then
  112. torch.setnumthreads(opt.thread)
  113. end
  114. if string.len(opt.l) == 0 then
  115. convert_image(opt)
  116. else
  117. convert_frames(opt)
  118. end
  119. end
  120. waifu2x()