| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631 | 
							- require 'pl'
 
- local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
 
- package.path = path.join(path.dirname(__FILE__), "..", "lib", "?.lua;") .. package.path
 
- require 'xlua'
 
- require 'w2nn'
 
- local iproc = require 'iproc'
 
- local reconstruct = require 'reconstruct'
 
- local image_loader = require 'image_loader'
 
- local gm = require 'graphicsmagick'
 
- local cjson = require 'cjson'
 
- local cmd = torch.CmdLine()
 
- cmd:text()
 
- cmd:text("waifu2x-benchmark")
 
- cmd:text("Options:")
 
- cmd:option("-dir", "./data/test", 'test image directory')
 
- cmd:option("-file", "", 'test image file list')
 
- cmd:option("-model1_dir", "./models/anime_style_art_rgb", 'model1 directory')
 
- cmd:option("-model2_dir", "", 'model2 directory (optional)')
 
- cmd:option("-method", "scale", '(scale|noise|noise_scale|user|diff)')
 
- cmd:option("-filter", "Catrom", "downscaling filter (Box|Lanczos|Catrom(Bicubic))")
 
- cmd:option("-resize_blur", 1.0, 'blur parameter for resize')
 
- cmd:option("-color", "y", '(rgb|y|r|g|b)')
 
- cmd:option("-noise_level", 1, 'model noise level')
 
- cmd:option("-jpeg_quality", 75, 'jpeg quality')
 
- cmd:option("-jpeg_times", 1, 'jpeg compression times')
 
- cmd:option("-jpeg_quality_down", 5, 'value of jpeg quality to decrease each times')
 
- cmd:option("-range_bug", 0, 'Reproducing the dynamic range bug that is caused by MATLAB\'s rgb2ycbcr(1|0)')
 
- cmd:option("-save_image", 0, 'save converted images')
 
- cmd:option("-save_baseline_image", 0, 'save baseline images')
 
- cmd:option("-output_dir", "./", 'output directroy')
 
- cmd:option("-show_progress", 1, 'show progressbar')
 
- cmd:option("-baseline_filter", "Catrom", 'baseline interpolation (Box|Lanczos|Catrom(Bicubic))')
 
- cmd:option("-save_info", 0, 'save score and parameters to benchmark.txt')
 
- cmd:option("-save_all", 0, 'group -save_info, -save_image and -save_baseline_image option')
 
- cmd:option("-thread", -1, 'number of CPU threads')
 
- cmd:option("-tta", 0, 'use tta')
 
- cmd:option("-tta_level", 8, 'tta level')
 
- cmd:option("-crop_size", 128, 'patch size per process')
 
- cmd:option("-batch_size", 1, 'batch_size')
 
- cmd:option("-force_cudnn", 0, 'use cuDNN backend')
 
- cmd:option("-yuv420", 0, 'use yuv420 jpeg')
 
- cmd:option("-name", "", 'model name for user method')
 
- cmd:option("-x_dir", "", 'input image for user method')
 
- cmd:option("-y_dir", "", 'groundtruth image for user method. filename must be the same as x_dir')
 
- cmd:option("-x_file", "", 'input image for user method')
 
- cmd:option("-y_file", "", 'groundtruth image for user method. filename must be the same as x_file')
 
- local function to_bool(settings, name)
 
-    if settings[name] == 1 then
 
-       settings[name] = true
 
-    else
 
-       settings[name] = false
 
-    end
 
- end
 
- local opt = cmd:parse(arg)
 
- torch.setdefaulttensortype('torch.FloatTensor')
 
- if cudnn then
 
-    cudnn.fastest = true
 
-    cudnn.benchmark = true
 
- end
 
- to_bool(opt, "force_cudnn")
 
- to_bool(opt, "yuv420")
 
- to_bool(opt, "save_all")
 
- to_bool(opt, "tta")
 
- if opt.save_all then
 
-    opt.save_image = true
 
-    opt.save_info = true
 
-    opt.save_baseline_image = true
 
- else
 
-    to_bool(opt, "save_image")
 
-    to_bool(opt, "save_info")
 
-    to_bool(opt, "save_baseline_image")
 
- end
 
- to_bool(opt, "show_progress")
 
- if opt.thread > 0 then
 
-    torch.setnumthreads(tonumber(opt.thread))
 
- end
 
- if opt.output_dir:len() > 0 then
 
-    dir.makepath(opt.output_dir)
 
- end
 
- local function rgb2y_matlab(x)
 
-    local y = torch.Tensor(1, x:size(2), x:size(3)):zero()
 
-    x = iproc.byte2float(x)
 
-    y:add(x[1] * 65.481)
 
-    y:add(x[2] * 128.553)
 
-    y:add(x[3] * 24.966)
 
-    y:add(16.0)
 
-    return y:byte():float()
 
- end
 
- local function RGBMSE(x1, x2)
 
-    x1 = iproc.float2byte(x1):float()
 
-    x2 = iproc.float2byte(x2):float()
 
-    return (x1 - x2):pow(2):mean()
 
- end
 
- local function CHMSE(x1, x2, ch)
 
-    x1 = iproc.float2byte(x1):float()
 
-    x2 = iproc.float2byte(x2):float()
 
-    return (x1[ch] - x2[ch]):pow(2):mean()
 
- end
 
- local function YMSE(x1, x2)
 
-    if opt.range_bug == 1 then
 
-       local x1_2 = rgb2y_matlab(x1)
 
-       local x2_2 = rgb2y_matlab(x2)
 
-       return (x1_2 - x2_2):pow(2):mean()
 
-    else
 
-       local x1_2 = image.rgb2y(x1):mul(255.0)
 
-       local x2_2 = image.rgb2y(x2):mul(255.0)
 
-       return (x1_2 - x2_2):pow(2):mean()
 
-    end
 
- end
 
- local function MSE(x1, x2, color)
 
-    if color == "y" then
 
-       return YMSE(x1, x2)
 
-    elseif color == "r" then
 
-       return CHMSE(x1, x2, 1)
 
-    elseif color == "g" then
 
-       return CHMSE(x1, x2, 2)
 
-    elseif color == "b" then
 
-       return CHMSE(x1, x2, 3)
 
-    else
 
-       return RGBMSE(x1, x2)
 
-    end
 
- end
 
- local function PSNR(x1, x2, color)
 
-    local mse = math.max(MSE(x1, x2, color), 1)
 
-    return 10 * math.log10((255.0 * 255.0) / mse)
 
- end
 
- local function MSE2PSNR(mse)
 
-    return 10 * math.log10((255.0 * 255.0) / math.max(mse, 1))
 
- end
 
- local function transform_jpeg(x, opt)
 
-    for i = 1, opt.jpeg_times do
 
-       jpeg = gm.Image(x, "RGB", "DHW")
 
-       jpeg:format("jpeg")
 
-       if opt.yuv420 then
 
- 	 jpeg:samplingFactors({2.0, 1.0, 1.0})
 
-       else
 
- 	 jpeg:samplingFactors({1.0, 1.0, 1.0})
 
-       end
 
-       blob, len = jpeg:toBlob(opt.jpeg_quality - (i - 1) * opt.jpeg_quality_down)
 
-       jpeg:fromBlob(blob, len)
 
-       x = jpeg:toTensor("byte", "RGB", "DHW")
 
-    end
 
-    return iproc.byte2float(x)
 
- end
 
- local function baseline_scale(x, filter)
 
-    return iproc.scale(x,
 
- 		      x:size(3) * 2.0,
 
- 		      x:size(2) * 2.0,
 
- 		      filter)
 
- end
 
- local function transform_scale(x, opt)
 
-    return iproc.scale(x,
 
- 		      x:size(3) * 0.5,
 
- 		      x:size(2) * 0.5,
 
- 		      opt.filter, opt.resize_blur)
 
- end
 
- local function transform_scale_jpeg(x, opt)
 
-    x = iproc.scale(x,
 
- 		   x:size(3) * 0.5,
 
- 		   x:size(2) * 0.5,
 
- 		   opt.filter, opt.resize_blur)
 
-    for i = 1, opt.jpeg_times do
 
-       jpeg = gm.Image(x, "RGB", "DHW")
 
-       jpeg:format("jpeg")
 
-       if opt.yuv420 then
 
- 	 jpeg:samplingFactors({2.0, 1.0, 1.0})
 
-       else
 
- 	 jpeg:samplingFactors({1.0, 1.0, 1.0})
 
-       end
 
-       blob, len = jpeg:toBlob(opt.jpeg_quality - (i - 1) * opt.jpeg_quality_down)
 
-       jpeg:fromBlob(blob, len)
 
-       x = jpeg:toTensor("byte", "RGB", "DHW")
 
-    end
 
-    return iproc.byte2float(x)
 
- end
 
- local function benchmark(opt, x, model1, model2)
 
-    local mse
 
-    local model1_mse = 0
 
-    local model2_mse = 0
 
-    local baseline_mse = 0
 
-    local model1_psnr = 0
 
-    local model2_psnr = 0
 
-    local baseline_psnr = 0
 
-    local model1_time = 0
 
-    local model2_time = 0
 
-    local scale_f = reconstruct.scale
 
-    local image_f = reconstruct.image
 
-    if opt.tta then
 
-       scale_f = function(model, scale, x, block_size, batch_size)
 
- 	 return reconstruct.scale_tta(model, opt.tta_level,
 
- 				      scale, x, block_size, batch_size)
 
-       end
 
-       image_f = function(model, x, block_size, batch_size)
 
- 	 return reconstruct.image_tta(model, opt.tta_level,
 
- 				      x, block_size, batch_size)
 
-       end
 
-    end
 
-    for i = 1, #x do
 
-       local basename = x[i].basename
 
-       local input, model1_output, model2_output, baseline_output, ground_truth
 
-       if opt.method == "scale" then
 
- 	 input = transform_scale(x[i].y, opt)
 
- 	 ground_truth = x[i].y
 
- 	 if opt.force_cudnn and i == 1 then -- run cuDNN benchmark first
 
- 	    model1_output = scale_f(model1, 2.0, input, opt.crop_size, opt.batch_size)
 
- 	    if model2 then
 
- 	       model2_output = scale_f(model2, 2.0, input, opt.crop_size, opt.batch_size)
 
- 	    end
 
- 	 end
 
- 	 t = sys.clock()
 
- 	 model1_output = scale_f(model1, 2.0, input, opt.crop_size, opt.batch_size)
 
- 	 model1_time = model1_time + (sys.clock() - t)
 
- 	 if model2 then
 
- 	    t = sys.clock()
 
- 	    model2_output = scale_f(model2, 2.0, input, opt.crop_size, opt.batch_size)
 
- 	    model2_time = model2_time + (sys.clock() - t)
 
- 	 end
 
- 	 baseline_output = baseline_scale(input, opt.baseline_filter)
 
-       elseif opt.method == "noise" then
 
- 	 input = transform_jpeg(x[i].y, opt)
 
- 	 ground_truth = x[i].y
 
- 	 if opt.force_cudnn and i == 1 then
 
- 	    model1_output = image_f(model1, input, opt.crop_size, opt.batch_size)
 
- 	    if model2 then
 
- 	       model2_output = image_f(model2, input, opt.crop_size, opt.batch_size)
 
- 	    end
 
- 	 end
 
- 	 t = sys.clock()
 
- 	 model1_output = image_f(model1, input, opt.crop_size, opt.batch_size)
 
- 	 model1_time = model1_time + (sys.clock() - t)
 
- 	 if model2 then
 
- 	    t = sys.clock()
 
- 	    model2_output = image_f(model2, input, opt.crop_size, opt.batch_size)
 
- 	    model2_time = model2_time + (sys.clock() - t)
 
- 	 end
 
- 	 baseline_output = input
 
-       elseif opt.method == "noise_scale" then
 
- 	 input = transform_scale_jpeg(x[i].y, opt)
 
- 	 ground_truth = x[i].y
 
- 	 if opt.force_cudnn and i == 1 then
 
- 	    if model1.noise_scale_model then
 
- 	       model1_output = scale_f(model1.noise_scale_model, 2.0,
 
- 				       input, opt.crop_size, opt.batch_size)
 
- 	    else
 
- 	       if model1.noise_model then
 
- 	       model1_output = image_f(model1.noise_model, input, opt.crop_size, opt.batch_size)
 
- 	       else
 
- 		  model1_output = input
 
- 	       end
 
- 	       model1_output = scale_f(model1.scale_model, 2.0, model1_output,
 
- 				       opt.crop_size, opt.batch_size)
 
- 	    end
 
- 	    if model2 then
 
- 	       if model2.noise_scale_model then
 
- 		  model2_output = scale_f(model2.noise_scale_model, 2.0,
 
- 					  input, opt.crop_size, opt.batch_size)
 
- 	       else
 
- 		  if model2.noise_model then
 
- 		     model2_output = image_f(model2.noise_model, input,
 
- 					     opt.crop_size, opt.batch_size)
 
- 		  else
 
- 		     model2_output = input
 
- 		  end
 
- 		  model2_output = scale_f(model2.scale_model, 2.0, model2_output,
 
- 				       opt.crop_size, opt.batch_size)
 
- 	       end
 
- 	    end
 
- 	 end
 
- 	 t = sys.clock()
 
- 	 if model1.noise_scale_model then
 
- 	    model1_output = scale_f(model1.noise_scale_model, 2.0,
 
- 				    input, opt.crop_size, opt.batch_size)
 
- 	 else
 
- 	    if model1.noise_model then
 
- 	       model1_output = image_f(model1.noise_model, input, opt.crop_size, opt.batch_size)
 
- 	    else
 
- 	       model1_output = input
 
- 	    end
 
- 	    model1_output = scale_f(model1.scale_model, 2.0, model1_output,
 
- 				    opt.crop_size, opt.batch_size)
 
- 	 end
 
- 	 model1_time = model1_time + (sys.clock() - t)
 
- 	 if model2 then
 
- 	    t = sys.clock()
 
- 	    if model2.noise_scale_model then
 
- 	       model2_output = scale_f(model2.noise_scale_model, 2.0,
 
- 				       input, opt.crop_size, opt.batch_size)
 
- 	    else
 
- 	       if model2.noise_model then
 
- 		  model2_output = image_f(model2.noise_model, input,
 
- 					  opt.crop_size, opt.batch_size)
 
- 	       else
 
- 		  model2_output = input
 
- 	       end
 
- 	       model2_output = scale_f(model2.scale_model, 2.0, model2_output,
 
- 				       opt.crop_size, opt.batch_size)
 
- 	    end
 
- 	    model2_time = model2_time + (sys.clock() - t)
 
- 	 end
 
- 	 baseline_output = baseline_scale(input, opt.baseline_filter)
 
-       elseif opt.method == "user" then
 
- 	 input = x[i].x
 
- 	 ground_truth = x[i].y
 
- 	 local y_scale = ground_truth:size(2) / input:size(2)
 
- 	 if y_scale > 1 then
 
- 	    if opt.force_cudnn and i == 1 then
 
- 	       model1_output = scale_f(model1, y_scale, input, opt.crop_size, opt.batch_size)
 
- 	       if model2 then
 
- 		  model2_output = scale_f(model2, y_scale, input, opt.crop_size, opt.batch_size)
 
- 	       end
 
- 	    end
 
- 	    t = sys.clock()
 
- 	    model1_output = scale_f(model1, y_scale, input, opt.crop_size, opt.batch_size)
 
- 	    model1_time = model1_time + (sys.clock() - t)
 
- 	    if model2 then
 
- 	       t = sys.clock()
 
- 	       model2_output = scale_f(model2, y_scale, input, opt.crop_size, opt.batch_size)
 
- 	       model2_time = model2_time + (sys.clock() - t)
 
- 	    end
 
- 	 else
 
- 	    if opt.force_cudnn and i == 1 then
 
- 	       model1_output = image_f(model1, input, opt.crop_size, opt.batch_size)
 
- 	       if model2 then
 
- 		  model2_output = image_f(model2, input, opt.crop_size, opt.batch_size)
 
- 	       end
 
- 	    end
 
- 	    t = sys.clock()
 
- 	    model1_output = image_f(model1, input, opt.crop_size, opt.batch_size)
 
- 	    model1_time = model1_time + (sys.clock() - t)
 
- 	    if model2 then
 
- 	       t = sys.clock()
 
- 	       model2_output = image_f(model2, input, opt.crop_size, opt.batch_size)
 
- 	       model2_time = model2_time + (sys.clock() - t)
 
- 	    end
 
- 	 end
 
-       elseif opt.method == "diff" then
 
- 	 input = x[i].x
 
- 	 ground_truth = x[i].y
 
- 	 model1_output = input
 
-       end
 
-       mse = MSE(ground_truth, model1_output, opt.color)
 
-       model1_mse = model1_mse + mse
 
-       model1_psnr = model1_psnr + MSE2PSNR(mse)
 
-       if model2 then
 
- 	 mse = MSE(ground_truth, model2_output, opt.color)
 
- 	 model2_mse = model2_mse + mse
 
- 	 model2_psnr = model2_psnr + MSE2PSNR(mse)
 
-       end
 
-       if baseline_output then
 
- 	 mse = MSE(ground_truth, baseline_output, opt.color)
 
- 	 baseline_mse = baseline_mse + mse
 
- 	 baseline_psnr = baseline_psnr + MSE2PSNR(mse)
 
-       end
 
-       if opt.save_image then
 
- 	 if opt.save_baseline_image and baseline_output then
 
- 	    image.save(path.join(opt.output_dir, string.format("%s_baseline.png", basename)),
 
- 		       baseline_output)
 
- 	 end
 
- 	 if model1_output then
 
- 	    image.save(path.join(opt.output_dir, string.format("%s_model1.png", basename)),
 
- 		       model1_output)
 
- 	 end
 
- 	 if model2_output then
 
- 	    image.save(path.join(opt.output_dir, string.format("%s_model2.png", basename)),
 
- 		       model2_output)
 
- 	 end
 
-       end
 
-       if opt.show_progress or i == #x then
 
- 	 if model2 then
 
- 	    if baseline_output then
 
- 	       io.stdout:write(
 
- 		  string.format("%d/%d; model1_time=%.2f, model2_time=%.2f, baseline_rmse=%f, model1_rmse=%f, model2_rmse=%f, baseline_psnr=%f, model1_psnr=%f, model2_psnr=%f \r",
 
- 				i, #x,
 
- 				model1_time,
 
- 				model2_time,
 
- 				math.sqrt(baseline_mse / i),
 
- 				math.sqrt(model1_mse / i), math.sqrt(model2_mse / i),
 
- 				baseline_psnr / i,
 
- 				model1_psnr / i, model2_psnr / i
 
- 		  ))
 
- 	    else
 
- 	       io.stdout:write(
 
- 		  string.format("%d/%d; model1_time=%.2f, model2_time=%.2f, model1_rmse=%f, model2_rmse=%f, model1_psnr=%f, model2_psnr=%f \r",
 
- 				i, #x,
 
- 				model1_time,
 
- 				model2_time,
 
- 				math.sqrt(model1_mse / i), math.sqrt(model2_mse / i),
 
- 				model1_psnr / i, model2_psnr / i
 
- 		  ))
 
- 	    end
 
- 	 else
 
- 	    if baseline_output then
 
- 	       io.stdout:write(
 
- 		  string.format("%d/%d; model1_time=%.2f, baseline_rmse=%f, model1_rmse=%f, baseline_psnr=%f, model1_psnr=%f \r",
 
- 				i, #x,
 
- 				model1_time,
 
- 				math.sqrt(baseline_mse / i), math.sqrt(model1_mse / i),
 
- 				baseline_psnr / i, model1_psnr / i
 
- 		  ))
 
- 	    else
 
- 	       io.stdout:write(
 
- 		  string.format("%d/%d; model1_time=%.2f, model1_rmse=%f, model1_psnr=%f \r",
 
- 				i, #x,
 
- 				model1_time,
 
- 				math.sqrt(model1_mse / i), model1_psnr / i
 
- 		  ))
 
- 	    end
 
- 	 end
 
- 	 io.stdout:flush()
 
-       end
 
-    end
 
-    if opt.save_info then
 
-       local fp = io.open(path.join(opt.output_dir, "benchmark.txt"), "w")
 
-       fp:write("options : " .. cjson.encode(opt) .. "\n")
 
-       if baseline_psnr > 0 then
 
- 	 fp:write(string.format("baseline: RMSE = %.3f, PSNR = %.3f\n",
 
- 				math.sqrt(baseline_mse / #x), baseline_psnr / #x))
 
-       end
 
-       if model1_psnr > 0 then
 
- 	 fp:write(string.format("model1  : RMSE = %.3f, PSNR = %.3f, evaluation time = %.3f\n",
 
- 				math.sqrt(model1_mse / #x), model1_psnr / #x, model1_time))
 
-       end
 
-       if model2_psnr > 0 then
 
- 	 fp:write(string.format("model2  : RMSE = %.3f, PSNR = %.3f, evaluation time = %.3f\n",
 
- 				math.sqrt(model2_mse / #x), model2_psnr / #x, model2_time))
 
-       end
 
-       fp:close()
 
-    end
 
-    io.stdout:write("\n")
 
- end
 
- local function load_data_from_dir(test_dir)
 
-    local test_x = {}
 
-    local files = dir.getfiles(test_dir, "*.*")
 
-    for i = 1, #files do
 
-       local name = path.basename(files[i])
 
-       local e = path.extension(name)
 
-       local base = name:sub(0, name:len() - e:len())
 
-       local img = image_loader.load_float(files[i])
 
-       if img then
 
- 	 table.insert(test_x, {y = iproc.crop_mod4(img),
 
- 			       basename = base})
 
-       end
 
-       if opt.show_progress then
 
- 	 xlua.progress(i, #files)
 
-       end
 
-    end
 
-    return test_x
 
- end
 
- local function load_data_from_file(test_file)
 
-    local test_x = {}
 
-    local files = utils.split(file.read(test_file), "\n")
 
-    for i = 1, #files do
 
-       local name = path.basename(files[i])
 
-       local e = path.extension(name)
 
-       local base = name:sub(0, name:len() - e:len())
 
-       local img = image_loader.load_float(files[i])
 
-       if img then
 
- 	 table.insert(test_x, {y = iproc.crop_mod4(img),
 
- 			       basename = base})
 
-       end
 
-       if opt.show_progress then
 
- 	 xlua.progress(i, #files)
 
-       end
 
-    end
 
-    return test_x
 
- end
 
- local function get_basename(f)
 
-    local name = path.basename(f)
 
-    local e = path.extension(name)
 
-    local base = name:sub(0, name:len() - e:len())
 
-    return base
 
- end
 
- local function load_user_data(y_dir, y_file, x_dir, x_file)
 
-    local test = {}
 
-    local y_files
 
-    local x_files
 
-    if y_file:len() > 0 then
 
-       y_files = utils.split(file.read(y_file), "\n")
 
-    else
 
-       y_files = dir.getfiles(y_dir, "*.*")
 
-    end
 
-    if x_file:len() > 0 then
 
-       x_files = utils.split(file.read(x_file), "\n")
 
-    else
 
-       x_files = dir.getfiles(x_dir, "*.*")
 
-    end
 
-    local basename_db = {}
 
-    for i = 1, #y_files do
 
-       basename_db[get_basename(y_files[i])] = {y = y_files[i]}
 
-    end
 
-    for i = 1, #x_files do
 
-       local key = get_basename(x_files[i])
 
-       if basename_db[key] then
 
- 	 basename_db[key].x = x_files[i]
 
-       else
 
- 	 error(string.format("%s is not found in %s", key, y_dir))
 
-       end
 
-    end
 
-    for i = 1, #y_files do
 
-       local key = get_basename(y_files[i])
 
-       local d = basename_db[key]
 
-       if not (d.x and d.y) then
 
- 	 error(string.format("%s is not found in %s", key, x_dir))
 
-       end
 
-    end
 
-    for i = 1, #y_files do
 
-       local key = get_basename(y_files[i])
 
-       local x = image_loader.load_float(basename_db[key].x)
 
-       local y = image_loader.load_float(basename_db[key].y)
 
-       if x and y then
 
- 	 table.insert(test, {y = y,
 
- 			     x = x,
 
- 			     basename = base})
 
-       end
 
-       if opt.show_progress then
 
- 	 xlua.progress(i, #y_files)
 
-       end
 
-    end
 
-    return test
 
- end
 
- function load_noise_scale_model(model_dir, noise_level, force_cudnn)
 
-    local f = path.join(model_dir, string.format("noise%d_scale2.0x_model.t7", opt.noise_level))
 
-    local s1, noise_scale = pcall(w2nn.load_model, f, force_cudnn)
 
-    local model = {}
 
-    if not s1 then
 
-       f = path.join(model_dir, string.format("noise%d_model.t7", opt.noise_level))
 
-       local noise
 
-       s1, noise = pcall(w2nn.load_model, f, force_cudnn)
 
-       if not s1 then
 
- 	 model.noise_model = nil
 
- 	 print(model_dir .. "'s noise model is not found. benchmark will use only scale model.")
 
-       else
 
- 	 model.noise_model = noise
 
-       end
 
-       f = path.join(model_dir, "scale2.0x_model.t7")
 
-       local scale
 
-       s1, scale = pcall(w2nn.load_model, f, force_cudnn)
 
-       if not s1 then
 
- 	 error(model_dir .. ": load error")
 
- 	 return nil
 
-       end
 
-       model.scale_model = scale
 
-    else
 
-       model.noise_scale_model = noise_scale
 
-    end
 
-    return model
 
- end
 
- if opt.show_progress then
 
-    print(opt)
 
- end
 
- if opt.method == "scale" then
 
-    local f1 = path.join(opt.model1_dir, "scale2.0x_model.t7")
 
-    local f2 = path.join(opt.model2_dir, "scale2.0x_model.t7")
 
-    local s1, model1 = pcall(w2nn.load_model, f1, opt.force_cudnn)
 
-    local s2, model2 = pcall(w2nn.load_model, f2, opt.force_cudnn)
 
-    if not s1 then
 
-       error("Load error: " .. f1)
 
-    end
 
-    if not s2 then
 
-       model2 = nil
 
-    end
 
-    local test_x
 
-    if opt.file:len() > 0 then
 
-       test_x = load_data_from_file(opt.file)
 
-    else
 
-       test_x = load_data_from_dir(opt.dir)
 
-    end
 
-    benchmark(opt, test_x, model1, model2)
 
- elseif opt.method == "noise" then
 
-    local f1 = path.join(opt.model1_dir, string.format("noise%d_model.t7", opt.noise_level))
 
-    local f2 = path.join(opt.model2_dir, string.format("noise%d_model.t7", opt.noise_level))
 
-    local s1, model1 = pcall(w2nn.load_model, f1, opt.force_cudnn)
 
-    local s2, model2 = pcall(w2nn.load_model, f2, opt.force_cudnn)
 
-    if not s1 then
 
-       error("Load error: " .. f1)
 
-    end
 
-    if not s2 then
 
-       model2 = nil
 
-    end
 
-    local test_x
 
-    if opt.file:len() > 0 then
 
-       test_x = load_data_from_file(opt.file)
 
-    else
 
-       test_x = load_data_from_dir(opt.dir)
 
-    end
 
-    benchmark(opt, test_x, model1, model2)
 
- elseif opt.method == "noise_scale" then
 
-    local model2 = nil
 
-    local model1 = load_noise_scale_model(opt.model1_dir, opt.noise_level, opt.force_cudnn)
 
-    if opt.model2_dir:len() > 0 then
 
-       model2 = load_noise_scale_model(opt.model2_dir, opt.noise_level, opt.force_cudnn)
 
-    end
 
-    local test_x
 
-    if opt.file:len() > 0 then
 
-       test_x = load_data_from_file(opt.file)
 
-    else
 
-       test_x = load_data_from_dir(opt.dir)
 
-    end
 
-    benchmark(opt, test_x, model1, model2)
 
- elseif opt.method == "user" then
 
-    local f1 = path.join(opt.model1_dir, string.format("%s_model.t7", opt.name))
 
-    local f2 = path.join(opt.model2_dir, string.format("%s_model.t7", opt.name))
 
-    local s1, model1 = pcall(w2nn.load_model, f1, opt.force_cudnn)
 
-    local s2, model2 = pcall(w2nn.load_model, f2, opt.force_cudnn)
 
-    if not s1 then
 
-       error("Load error: " .. f1)
 
-    end
 
-    if not s2 then
 
-       model2 = nil
 
-    end
 
-    local test = load_user_data(opt.y_dir, opt.y_file, opt.x_dir, opt.x_file)
 
-    benchmark(opt, test, model1, model2)
 
- elseif opt.method == "diff" then
 
-    local test = load_user_data(opt.y_dir, opt.y_file, opt.x_dir, opt.x_file)
 
-    benchmark(opt, test, nil, nil)
 
- end
 
 
  |