| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 | 
							- require 'pl'
 
- local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
 
- package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path
 
- require 'image'
 
- local cjson = require 'cjson'
 
- local csvigo = require 'csvigo'
 
- local compression = require 'compression'
 
- local settings = require 'settings'
 
- local image_loader = require 'image_loader'
 
- local iproc = require 'iproc'
 
- local alpha_util = require 'alpha_util'
 
- local function crop_if_large(src, max_size)
 
-    if max_size < 0 then
 
-       return src
 
-    end
 
-    local tries = 4
 
-    if src:size(2) >= max_size and src:size(3) >= max_size then
 
-       local rect
 
-       for i = 1, tries do
 
- 	 local yi = torch.random(0, src:size(2) - max_size)
 
- 	 local xi = torch.random(0, src:size(3) - max_size)
 
- 	 rect = iproc.crop(src, xi, yi, xi + max_size, yi + max_size)
 
- 	 -- ignore simple background
 
- 	 if rect:float():std() >= 0 then
 
- 	    break
 
- 	 end
 
-       end
 
-       return rect
 
-    else
 
-       return src
 
-    end
 
- end
 
- local function crop_if_large_pair(x, y, max_size)
 
-    if max_size < 0 then
 
-       return x, y
 
-    end
 
-    local scale_y = y:size(2) / x:size(2)
 
-    local mod = 4
 
-    assert(x:size(3) == (y:size(3) / scale_y))
 
-    local tries = 4
 
-    if y:size(2) > max_size and y:size(3) > max_size then
 
-       assert(max_size % 4 == 0)
 
-       local rect_x, rect_y
 
-       for i = 1, tries do
 
- 	 local yi = torch.random(0, y:size(2) - max_size)
 
- 	 local xi = torch.random(0, y:size(3) - max_size)
 
- 	 if mod then
 
- 	    yi = yi - (yi % mod)
 
- 	    xi = xi - (xi % mod)
 
- 	 end
 
- 	 rect_y = iproc.crop(y, xi, yi, xi + max_size, yi + max_size)
 
- 	 rect_x = iproc.crop(y, xi / scale_y, yi / scale_y, xi / scale_y + max_size / scale_y, yi / scale_y + max_size / scale_y)
 
- 	 -- ignore simple background
 
- 	 if rect_y:float():std() >= 0 then
 
- 	    break
 
- 	 end
 
-       end
 
-       return rect_x, rect_y
 
-    else
 
-       return x, y
 
-    end
 
- end
 
- local function load_images(list)
 
-    local MARGIN = 32
 
-    local csv = csvigo.load({path = list, verbose = false, mode = "raw"})
 
-    local x = {}
 
-    local skip_notice = false
 
-    for i = 1, #csv do
 
-       local filename = csv[i][1]
 
-       local csv_meta = csv[i][2]
 
-       if csv_meta and csv_meta:len() > 0 then
 
- 	 csv_meta = cjson.decode(csv_meta)
 
-       end
 
-       if csv_meta and csv_meta.filters then
 
- 	 filters = csv_meta.filters
 
-       end
 
-       local im, meta = image_loader.load_byte(filename)
 
-       local skip = false
 
-       local alpha_color = torch.random(0, 1)
 
-       if meta and meta.alpha then
 
- 	 if settings.use_transparent_png then
 
- 	    im = alpha_util.fill(im, meta.alpha, alpha_color)
 
- 	 else
 
- 	    skip = true
 
- 	 end
 
-       end
 
-       if skip then
 
- 	 if not skip_notice then
 
- 	    io.stderr:write("skip transparent png (settings.use_transparent_png=0)\n")
 
- 	    skip_notice = true
 
- 	 end
 
-       else
 
- 	 if csv_meta and csv_meta.x then
 
- 	    -- method == user
 
- 	    local yy = im
 
- 	    local xx, meta2 = image_loader.load_byte(csv_meta.x)
 
- 	    if meta2 and meta2.alpha then
 
- 	       xx = alpha_util.fill(xx, meta2.alpha, alpha_color)
 
- 	    end
 
- 	    xx, yy = crop_if_large_pair(xx, yy, settings.max_training_image_size)
 
- 	    table.insert(x, {{y = compression.compress(yy), x = compression.compress(xx)},
 
- 			    {data = {filters = filters, has_x = true}}})
 
- 	 else
 
- 	    im = crop_if_large(im, settings.max_training_image_size)
 
- 	    im = iproc.crop_mod4(im)
 
- 	    local scale = 1.0
 
- 	    if settings.random_half_rate > 0.0 then
 
- 	       scale = 2.0
 
- 	    end
 
- 	    if im then
 
- 	       if im:size(2) > (settings.crop_size * scale + MARGIN) and im:size(3) > (settings.crop_size * scale + MARGIN) then
 
- 		  table.insert(x, {compression.compress(im), {data = {filters = filters}}})
 
- 	       else
 
- 		  io.stderr:write(string.format("\n%s: skip: image is too small (%d > size).\n", filename, settings.crop_size * scale + MARGIN))
 
- 	       end
 
- 	    else
 
- 	       io.stderr:write(string.format("\n%s: skip: load error.\n", filename))
 
- 	    end
 
- 	 end
 
-       end
 
-       xlua.progress(i, #csv)
 
-       if i % 10 == 0 then
 
- 	 collectgarbage()
 
-       end
 
-    end
 
-    return x
 
- end
 
- torch.manualSeed(settings.seed)
 
- print(settings)
 
- local x = load_images(settings.image_list)
 
- torch.save(settings.images, x)
 
 
  |