| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706 | require 'pl'local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.pathrequire 'optim'require 'xlua'require 'image'require 'w2nn'local threads = require 'threads'local settings = require 'settings'local srcnn = require 'srcnn'local minibatch_adam = require 'minibatch_adam'local iproc = require 'iproc'local reconstruct = require 'reconstruct'local image_loader = require 'image_loader'local function save_test_scale(model, rgb, file)   local up = reconstruct.scale(model, settings.scale, rgb)   image.save(file, up)endlocal function save_test_jpeg(model, rgb, file)   local im, count = reconstruct.image(model, rgb)   image.save(file, im)endlocal function save_test_user(model, rgb, file)   if settings.scale == 1 then      save_test_jpeg(model, rgb, file)   else      save_test_scale(model, rgb, file)   endendlocal function split_data(x, test_size)   if settings.validation_filename_split then      if not (x[1][2].data and x[1][2].data.basename) then	 error("`images.t` does not have basename info. You need to re-run `convert_data.lua`.")      end      local basename_db = {}      for i = 1, #x do	 local meta = x[i][2].data	 if basename_db[meta.basename] then	    table.insert(basename_db[meta.basename], x[i])	 else	    basename_db[meta.basename] = {x[i]}	 end      end      local basename_list = {}      for k, v in pairs(basename_db) do	 table.insert(basename_list, v)      end      local index = torch.randperm(#basename_list)      local train_x = {}      local valid_x = {}      local pos = 1      for i = 1, #basename_list do	 if #valid_x >= test_size then	    break	 end	 local xs = basename_list[index[pos]]	 for j = 1, #xs do	    table.insert(valid_x, xs[j])	 end	 pos = pos + 1      end      for i = pos, #basename_list do	 local xs = basename_list[index[i]]	 for j = 1, #xs do	    table.insert(train_x, xs[j])	 end      end      return train_x, valid_x   else      local index = torch.randperm(#x)      local train_size = #x - test_size      local train_x = {}      local valid_x = {}      for i = 1, train_size do	 train_x[i] = x[index[i]]      end      for i = 1, test_size do	 valid_x[i] = x[index[train_size + i]]      end      return train_x, valid_x   endendlocal g_transform_pool = nillocal g_mutex = nillocal g_mutex_id = nillocal function transform_pool_init(has_resize, offset)   local nthread = torch.getnumthreads()   if (settings.thread > 0) then      nthread = settings.thread   end   g_mutex = threads.Mutex()   g_mutex_id = g_mutex:id()   g_transform_pool = threads.Threads(      nthread,      threads.safe(      function(threadid)	 require 'pl'	 local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()	 package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path	 require 'torch'	 require 'nn'	 require 'cunn'	 torch.setnumthreads(1)	 torch.setdefaulttensortype("torch.FloatTensor")	 local threads = require 'threads'	 local compression = require 'compression'	 local pairwise_transform = require 'pairwise_transform'	 function transformer(x, is_validation, n)	    local mutex = threads.Mutex(g_mutex_id)	    local meta = {data = {}}	    local y = nil	    if type(x) == "table" and type(x[2]) == "table" then	       meta = x[2]	       if x[1].x and x[1].y then		  y = compression.decompress(x[1].y)		  x = compression.decompress(x[1].x)	       else		  x = compression.decompress(x[1])	       end	    else	       x = compression.decompress(x)	    end	    n = n or settings.patches	    if is_validation == nil then is_validation = false end	    local random_color_noise_rate = nil 	    local random_overlay_rate = nil	    local active_cropping_rate = nil	    local active_cropping_tries = nil	    if is_validation then	       active_cropping_rate = settings.active_cropping_rate	       active_cropping_tries = settings.active_cropping_tries	       random_color_noise_rate = 0.0	       random_overlay_rate = 0.0	    else	       active_cropping_rate = settings.active_cropping_rate	       active_cropping_tries = settings.active_cropping_tries	       random_color_noise_rate = settings.random_color_noise_rate	       random_overlay_rate = settings.random_overlay_rate	    end	    if settings.method == "scale" then	       local conf = tablex.update({		     mutex = mutex,		     downsampling_filters = settings.downsampling_filters,		     random_half_rate = settings.random_half_rate,		     random_color_noise_rate = random_color_noise_rate,		     random_overlay_rate = random_overlay_rate,		     random_unsharp_mask_rate = settings.random_unsharp_mask_rate,		     random_blur_rate = settings.random_blur_rate,		     random_blur_size = settings.random_blur_size,		     random_blur_sigma_min = settings.random_blur_sigma_min,		     random_blur_sigma_max = settings.random_blur_sigma_max,		     max_size = settings.max_size,		     active_cropping_rate = active_cropping_rate,		     active_cropping_tries = active_cropping_tries,		     rgb = (settings.color == "rgb"),		     x_upsampling = not has_resize,		     resize_blur_min = settings.resize_blur_min,		     resize_blur_max = settings.resize_blur_max}, meta)	       return pairwise_transform.scale(x,					       settings.scale,					       settings.crop_size, offset,					       n, conf)	    elseif settings.method == "noise" then	       local conf = tablex.update({		     mutex = mutex,		     random_half_rate = settings.random_half_rate,		     random_color_noise_rate = random_color_noise_rate,		     random_overlay_rate = random_overlay_rate,		     random_unsharp_mask_rate = settings.random_unsharp_mask_rate,		     random_blur_rate = settings.random_blur_rate,		     random_blur_size = settings.random_blur_size,		     random_blur_sigma_min = settings.random_blur_sigma_min,		     random_blur_sigma_max = settings.random_blur_sigma_max,		     max_size = settings.max_size,		     jpeg_chroma_subsampling_rate = settings.jpeg_chroma_subsampling_rate,		     active_cropping_rate = active_cropping_rate,		     active_cropping_tries = active_cropping_tries,		     nr_rate = settings.nr_rate,		     rgb = (settings.color == "rgb")}, meta)	       return pairwise_transform.jpeg(x,					      settings.style,					      settings.noise_level,					      settings.crop_size, offset,					      n, conf)	    elseif settings.method == "noise_scale" then	       local conf = tablex.update({		     mutex = mutex,		     downsampling_filters = settings.downsampling_filters,		     random_half_rate = settings.random_half_rate,		     random_color_noise_rate = random_color_noise_rate,		     random_overlay_rate = random_overlay_rate,		     random_unsharp_mask_rate = settings.random_unsharp_mask_rate,		     random_blur_rate = settings.random_blur_rate,		     random_blur_size = settings.random_blur_size,		     random_blur_sigma_min = settings.random_blur_sigma_min,		     random_blur_sigma_max = settings.random_blur_sigma_max,		     max_size = settings.max_size,		     jpeg_chroma_subsampling_rate = settings.jpeg_chroma_subsampling_rate,		     nr_rate = settings.nr_rate,		     active_cropping_rate = active_cropping_rate,		     active_cropping_tries = active_cropping_tries,		     rgb = (settings.color == "rgb"),		     x_upsampling = not has_resize,		     resize_blur_min = settings.resize_blur_min,		     resize_blur_max = settings.resize_blur_max}, meta)	       return pairwise_transform.jpeg_scale(x,						    settings.scale,						    settings.style,						    settings.noise_level,						    settings.crop_size, offset,						    n, conf)	    elseif settings.method == "user" then	       local random_erasing_rate = 0	       local random_erasing_n = 0	       local random_erasing_rect_min = 0	       local random_erasing_rect_max = 0	       if is_validation then	       else		  random_erasing_rate = settings.random_erasing_rate		  random_erasing_n = settings.random_erasing_n		  random_erasing_rect_min = settings.random_erasing_rect_min		  random_erasing_rect_max = settings.random_erasing_rect_max	       end	       local conf = tablex.update({		     gcn = settings.gcn,		     max_size = settings.max_size,		     active_cropping_rate = active_cropping_rate,		     active_cropping_tries = active_cropping_tries,		     random_pairwise_rotate_rate = settings.random_pairwise_rotate_rate,		     random_pairwise_rotate_min = settings.random_pairwise_rotate_min,		     random_pairwise_rotate_max = settings.random_pairwise_rotate_max,		     random_pairwise_scale_rate = settings.random_pairwise_scale_rate,		     random_pairwise_scale_min = settings.random_pairwise_scale_min,		     random_pairwise_scale_max = settings.random_pairwise_scale_max,		     random_pairwise_negate_rate = settings.random_pairwise_negate_rate,		     random_pairwise_negate_x_rate = settings.random_pairwise_negate_x_rate,		     pairwise_y_binary = settings.pairwise_y_binary,		     pairwise_flip = settings.pairwise_flip,		     random_erasing_rate = random_erasing_rate,		     random_erasing_n = random_erasing_n,		     random_erasing_rect_min = random_erasing_rect_min,		     random_erasing_rect_max = random_erasing_rect_max,		     rgb = (settings.color == "rgb")}, meta)	       return pairwise_transform.user(x, y,					      settings.crop_size, offset,					      n, conf)	    end	 end      end)   )   g_transform_pool:synchronize()endlocal function make_validation_set(x, n, patches)   local nthread = torch.getnumthreads()   if (settings.thread > 0) then      nthread = settings.thread   end   n = n or 4   local validation_patches = math.min(16, patches or 16)   local data = {}   g_transform_pool:synchronize()   torch.setnumthreads(1) -- 1   for i = 1, #x do      for k = 1, math.max(n / validation_patches, 1) do	 local input = x[i]	 g_transform_pool:addjob(	    function()	       local xy = transformer(input, true, validation_patches)	       return xy	    end,	    function(xy)	       for j = 1, #xy do		  table.insert(data, {x = xy[j][1], y = xy[j][2]})	       end	    end	 )      end      if i % 20 == 0 then	 collectgarbage()	 g_transform_pool:synchronize()	 xlua.progress(i, #x)      end   end   g_transform_pool:synchronize()   torch.setnumthreads(nthread) -- revert   local new_data = {}   local perm = torch.randperm(#data)   for i = 1, perm:size(1) do      new_data[i] = data[perm[i]]   end   data = new_data   return dataendlocal function validate(model, criterion, eval_metric, data, batch_size)   local psnr = 0   local loss = 0   local mse = 0   local loss_count = 0   local inputs_tmp = torch.Tensor(batch_size,				   data[1].x:size(1), 				   data[1].x:size(2),				   data[1].x:size(3)):zero()   local targets_tmp = torch.Tensor(batch_size,				    data[1].y:size(1),				    data[1].y:size(2),				    data[1].y:size(3)):zero()   local inputs = inputs_tmp:clone():cuda()   local targets = targets_tmp:clone():cuda()   for t = 1, #data, batch_size do      if t + batch_size -1 > #data then	 break      end      for i = 1, batch_size do         inputs_tmp[i]:copy(data[t + i - 1].x)	 targets_tmp[i]:copy(data[t + i - 1].y)      end      inputs:copy(inputs_tmp)      targets:copy(targets_tmp)      local z = model:forward(inputs)      local batch_mse = eval_metric:forward(z, targets)      loss = loss + criterion:forward(z, targets)      mse = mse + batch_mse      psnr = psnr + (10 * math.log10(1 / (batch_mse + 1.0e-6)))      loss_count = loss_count + 1      if loss_count % 10 == 0 then	 xlua.progress(t, #data)	 collectgarbage()      end   end   xlua.progress(#data, #data)   return {loss = loss / loss_count, MSE = mse / loss_count, PSNR = psnr / loss_count}endlocal function create_criterion(model)   if settings.loss == "huber" then      if reconstruct.is_rgb(model) then	 local offset = reconstruct.offset_size(model)	 local output_w = settings.crop_size - offset * 2	 local weight = torch.Tensor(3, output_w * output_w)	 weight[1]:fill(0.29891 * 3) -- R	 weight[2]:fill(0.58661 * 3) -- G	 weight[3]:fill(0.11448 * 3) -- B	 return w2nn.ClippedWeightedHuberCriterion(weight, 0.1, {0.0, 1.0}):cuda()      else	 local offset = reconstruct.offset_size(model)	 local output_w = settings.crop_size - offset * 2	 local weight = torch.Tensor(1, output_w * output_w)	 weight[1]:fill(1.0)	 return w2nn.ClippedWeightedHuberCriterion(weight, 0.1, {0.0, 1.0}):cuda()      end   elseif settings.loss == "l1" then      return w2nn.L1Criterion():cuda()   elseif settings.loss == "mse" then      return w2nn.ClippedMSECriterion(0, 1.0):cuda()   elseif settings.loss == "bce" then      local bce = nn.BCECriterion()      bce.sizeAverage = true      return bce:cuda()   elseif settings.loss == "aux_bce" then      local aux = w2nn.AuxiliaryLossCriterion(nn.BCECriterion)      aux.sizeAverage = true      return aux:cuda()   elseif settings.loss == "aux_huber" then      local args = {}      if reconstruct.is_rgb(model) then	 local offset = reconstruct.offset_size(model)	 local output_w = settings.crop_size - offset * 2	 local weight = torch.Tensor(3, output_w * output_w)	 weight[1]:fill(0.29891 * 3) -- R	 weight[2]:fill(0.58661 * 3) -- G	 weight[3]:fill(0.11448 * 3) -- B	 args = {weight, 0.1, {0.0, 1.0}}      else	 local offset = reconstruct.offset_size(model)	 local output_w = settings.crop_size - offset * 2	 local weight = torch.Tensor(1, output_w * output_w)	 weight[1]:fill(1.0)	 args = {weight, 0.1, {0.0, 1.0}}      end      local aux = w2nn.AuxiliaryLossCriterion(w2nn.ClippedWeightedHuberCriterion, args)      return aux:cuda()   elseif settings.loss == "lbp" then      if reconstruct.is_rgb(model) then	 return w2nn.RandomBinaryCriterion(3, 128):cuda()      else	 return w2nn.RandomBinaryCriterion(1, 128):cuda()      end   elseif settings.loss == "aux_lbp" then      if reconstruct.is_rgb(model) then	 return w2nn.AuxiliaryLossCriterion(w2nn.RandomBinaryCriterion, {3, 128}):cuda()      else	 return w2nn.AuxiliaryLossCriterion(w2nn.RandomBinaryCriterion, {1, 128}):cuda()      end   else      error("unsupported loss .." .. settings.loss)   endendlocal function resampling(x, y, train_x)   local c = 1   local shuffle = torch.randperm(#train_x)   local nthread = torch.getnumthreads()   if (settings.thread > 0) then      nthread = settings.thread   end   torch.setnumthreads(1) -- 1   for t = 1, #train_x do      local input = train_x[shuffle[t]]      g_transform_pool:addjob(	 function()	    local xy = transformer(input, false, settings.patches)	    return xy	 end,	 function(xy)	    for i = 1, #xy do	       if c <= x:size(1) then		  x[c]:copy(xy[i][1])		  y[c]:copy(xy[i][2])		  c = c + 1	       else		  break	       end	    end	 end      )      if t % 50 == 0 then	 collectgarbage()	 g_transform_pool:synchronize()	 xlua.progress(t, #train_x)      end      if c > x:size(1) then	 break      end   end   g_transform_pool:synchronize()   xlua.progress(#train_x, #train_x)   torch.setnumthreads(nthread) -- revertendlocal function get_oracle_data(x, y, instance_loss, k, samples)   local index = torch.LongTensor(instance_loss:size(1))   local dummy = torch.Tensor(instance_loss:size(1))   torch.topk(dummy, index, instance_loss, k, 1, true)   print("MSE of all data: " ..instance_loss:mean() .. ", MSE of oracle data: " .. dummy:mean())   local shuffle = torch.randperm(k)   local x_s = x:size()   local y_s = y:size()   x_s[1] = samples   y_s[1] = samples   local oracle_x = torch.Tensor(table.unpack(torch.totable(x_s)))   local oracle_y = torch.Tensor(table.unpack(torch.totable(y_s)))   for i = 1, samples do      oracle_x[i]:copy(x[index[shuffle[i]]])      oracle_y[i]:copy(y[index[shuffle[i]]])   end   return oracle_x, oracle_yendlocal function remove_small_image(x)   local compression = require 'compression'   local new_x = {}   for i = 1, #x do      local xe, meta, x_s      xe = x[i]      if type(x) == "table" and type(x[2]) == "table" then	 if xe[1].x and xe[1].y then	    x_s = compression.size(xe[1].y) -- y size	 else	    x_s = compression.size(xe[1])	 end      else	 x_s = compression.size(xe)      end      if x_s[2] / settings.scale > settings.crop_size + 32 and      x_s[3] / settings.scale > settings.crop_size + 32 then	 table.insert(new_x, x[i])      end      if i % 100 == 0 then	 collectgarbage()      end   end   print(string.format("%d small images are removed", #x - #new_x))   return new_xendlocal function plot(train, valid)   gnuplot.plot({	 {'training', torch.Tensor(train), '-'},	 {'validation', torch.Tensor(valid), '-'}})endlocal function train()   local x = torch.load(settings.images)   if settings.method ~= "user" then      x = remove_small_image(x)   end   local train_x, valid_x = split_data(x, math.max(math.floor(settings.validation_rate * #x), 1))   local hist_train = {}   local hist_valid = {}   local adam_config = {      xLearningRate = settings.learning_rate,      xBatchSize = settings.batch_size,      xLearningRateDecay = settings.learning_rate_decay,      xInstanceLoss = (settings.oracle_rate > 0)   }   local model   if settings.resume:len() > 0 then      model = torch.load(settings.resume, "ascii")      adam_config.xEvalCount = math.floor((#train_x * settings.patches) / settings.batch_size) * settings.batch_size * settings.inner_epoch * (settings.resume_epoch - 1)      print(string.format("set eval count = %d", adam_config.xEvalCount))      if adam_config.xEvalCount > 0 then	 adam_config.learningRate = adam_config.xLearningRate / (1 + adam_config.xEvalCount * adam_config.xLearningRateDecay)	 print(string.format("set learning rate = %E", adam_config.learningRate))      else	 adam_config.xEvalCount = 0	 adam_config.learningRate = adam_config.xLearningRate      end   else      if stringx.endswith(settings.model, ".lua") then	 local create_model = dofile(settings.model)	 model = create_model(srcnn, settings)      else	 model = srcnn.create(settings.model, settings.backend, settings.color)      end   end   if model.w2nn_input_size then      if settings.crop_size ~= model.w2nn_input_size then	 io.stderr:write(string.format("warning: crop_size is replaced with %d\n",				       model.w2nn_input_size))	 settings.crop_size = model.w2nn_input_size      end   end   if model.w2nn_gcn then      settings.gcn = true   else      settings.gcn = false   end   dir.makepath(settings.model_dir)   local offset = reconstruct.offset_size(model)   transform_pool_init(reconstruct.has_resize(model), offset)   local criterion = create_criterion(model)   local eval_metric = nil   if settings.loss:find("aux_") ~= nil then      eval_metric = w2nn.AuxiliaryLossCriterion(w2nn.ClippedMSECriterion):cuda()   else      eval_metric = w2nn.ClippedMSECriterion():cuda()   end   local ch = nil   if settings.color == "y" then      ch = 1   elseif settings.color == "rgb" then      ch = 3   end   local best_score = 1000.0   print("# make validation-set")   local valid_xy = make_validation_set(valid_x, 					settings.validation_crops,					settings.patches)   valid_x = nil      collectgarbage()   model:cuda()   print("load .. " .. #train_x)   local x = nil   local y = torch.Tensor(settings.patches * #train_x,			  ch * (settings.crop_size - offset * 2) * (settings.crop_size - offset * 2)):zero()   if reconstruct.has_resize(model) then      x = torch.Tensor(settings.patches * #train_x,		       ch, settings.crop_size / settings.scale, settings.crop_size / settings.scale)   else      x = torch.Tensor(settings.patches * #train_x,		       ch, settings.crop_size, settings.crop_size)   end   local instance_loss = nil   local pmodel = w2nn.data_parallel(model, settings.gpu)   for epoch = settings.resume_epoch, settings.epoch do      pmodel:training()      print("# " .. epoch)      if adam_config.learningRate then	 print("learning rate: " .. adam_config.learningRate)      end      print("## resampling")      if instance_loss then	 -- active learning	 local oracle_k = math.min(x:size(1) * (settings.oracle_rate * (1 / (1 - settings.oracle_drop_rate))), x:size(1))	 local oracle_n = math.min(x:size(1) * settings.oracle_rate, x:size(1))	 if oracle_n > 0 then	    local oracle_x, oracle_y = get_oracle_data(x, y, instance_loss, oracle_k, oracle_n)	    resampling(x:narrow(1, oracle_x:size(1) + 1, x:size(1)-oracle_x:size(1)),		       y:narrow(1, oracle_x:size(1) + 1, x:size(1) - oracle_x:size(1)), train_x)	    x:narrow(1, 1, oracle_x:size(1)):copy(oracle_x)	    y:narrow(1, 1, oracle_y:size(1)):copy(oracle_y)	    local draw_n = math.floor(math.sqrt(oracle_x:size(1), 0.5))	    if draw_n > 100 then	       draw_n = 100	    end	    image.save(path.join(settings.model_dir, "oracle_x.png"), 		       image.toDisplayTensor({			     input = oracle_x:narrow(1, 1, draw_n * draw_n),			     padding = 2,			     nrow = draw_n,			     min = 0,			     max = 1}))	 else	    resampling(x, y, train_x)	 end      else	 resampling(x, y, train_x, pairwise_func)      end      collectgarbage()      instance_loss = torch.Tensor(x:size(1)):zero()      for i = 1, settings.inner_epoch do	 pmodel:training()	 local train_score, il = minibatch_adam(pmodel, criterion, eval_metric, x, y, adam_config)	 instance_loss:copy(il)	 print(train_score)	 pmodel:evaluate()	 print("# validation")	 local score = validate(pmodel, criterion, eval_metric, valid_xy, adam_config.xBatchSize)	 table.insert(hist_train, train_score.loss)	 table.insert(hist_valid, score.loss)	 if settings.plot then	    plot(hist_train, hist_valid)	 end	 local score_for_update	 if settings.update_criterion == "mse" then	    score_for_update = score.MSE	 else	    score_for_update = score.loss	 end	 if score_for_update < best_score then	    local test_image = image_loader.load_float(settings.test) -- reload	    best_score = score_for_update	    print("* model has updated")	    if settings.save_history then	       pmodel:clearState()	       torch.save(settings.model_file_best, model, "ascii")	       torch.save(string.format(settings.model_file, epoch, i), model, "ascii")	       if settings.method == "noise" then		  local log = path.join(settings.model_dir,					("noise%d_best.%d-%d.png"):format(settings.noise_level,									  epoch, i))		  save_test_jpeg(model, test_image, log)	       elseif settings.method == "scale" then		  local log = path.join(settings.model_dir,					("scale%.1f_best.%d-%d.png"):format(settings.scale,									    epoch, i))		  save_test_scale(model, test_image, log)	       elseif settings.method == "noise_scale" then		  local log = path.join(settings.model_dir,					("noise%d_scale%.1f_best.%d-%d.png"):format(settings.noise_level, 										    settings.scale,										    epoch, i))		  save_test_scale(model, test_image, log)	       elseif settings.method == "user" then		  local log = path.join(settings.model_dir,					("%s_best.%d-%d.png"):format(settings.name, 								     epoch, i))		  save_test_user(model, test_image, log)	       end	    else	       pmodel:clearState()	       torch.save(settings.model_file, model, "ascii")	       if settings.method == "noise" then		  local log = path.join(settings.model_dir,					("noise%d_best.png"):format(settings.noise_level))		  save_test_jpeg(model, test_image, log)	       elseif settings.method == "scale" then		  local log = path.join(settings.model_dir,					("scale%.1f_best.png"):format(settings.scale))		  save_test_scale(model, test_image, log)	       elseif settings.method == "noise_scale" then		  local log = path.join(settings.model_dir,					("noise%d_scale%.1f_best.png"):format(settings.noise_level, 									      settings.scale))		  save_test_scale(model, test_image, log)	       elseif settings.method == "user" then		  local log = path.join(settings.model_dir,					("%s_best.png"):format(settings.name))		  save_test_user(model, test_image, log)	       end	    end	 end	 print("Batch-wise PSNR: " .. score.PSNR .. ", loss: " .. score.loss .. ", MSE: " .. score.MSE .. ", best: " .. best_score)	 collectgarbage()      end   endendtorch.manualSeed(settings.seed)cutorch.manualSeed(settings.seed)print(settings)train()
 |