123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479 |
- require 'image'
- local gm = require 'graphicsmagick'
- local iproc = require 'iproc'
- local reconstruct = require 'reconstruct'
- local pairwise_transform = {}
- local function random_half(src, p)
- p = p or 0.25
- --local filter = ({"Box","Blackman", "SincFast", "Jinc"})[torch.random(1, 4)]
- local filter = "Box"
- if p < torch.uniform() and (src:size(2) > 768 and src:size(3) > 1024) then
- return iproc.scale(src, src:size(3) * 0.5, src:size(2) * 0.5, filter)
- else
- return src
- end
- end
- local function pcacov(x)
- local mean = torch.mean(x, 1)
- local xm = x - torch.ger(torch.ones(x:size(1)), mean:squeeze())
- local c = torch.mm(xm:t(), xm)
- c:div(x:size(1) - 1)
- local ce, cv = torch.symeig(c, 'V')
- return ce, cv
- end
- local function crop_if_large(src, max_size)
- if src:size(2) > max_size and src:size(3) > max_size then
- local yi = torch.random(0, src:size(2) - max_size)
- local xi = torch.random(0, src:size(3) - max_size)
- return image.crop(src, xi, yi, xi + max_size, yi + max_size)
- else
- return src
- end
- end
- local function active_cropping(x, y, size, offset, p, tries)
- assert("x:size == y:size", x:size(2) == y:size(2) and x:size(3) == y:size(3))
- local r = torch.uniform()
- if p < r then
- local xi = torch.random(offset, y:size(3) - (size + offset + 1))
- local yi = torch.random(offset, y:size(2) - (size + offset + 1))
- local xc = image.crop(x, xi, yi, xi + size, yi + size)
- local yc = image.crop(y, xi, yi, xi + size, yi + size)
- yc = yc:float():div(255)
- xc = xc:float():div(255)
- return xc, yc
- else
- local samples = {}
- local sum_mse = 0
- for i = 1, tries do
- local xi = torch.random(offset, y:size(3) - (size + offset + 1))
- local yi = torch.random(offset, y:size(2) - (size + offset + 1))
- local xc = image.crop(x, xi, yi, xi + size, yi + size):float():div(255)
- local yc = image.crop(y, xi, yi, xi + size, yi + size):float():div(255)
- local mse = (xc - yc):pow(2):mean()
- sum_mse = sum_mse + mse
- table.insert(samples, {xc = xc, yc = yc, mse = mse})
- end
- if sum_mse > 0 then
- table.sort(samples,
- function (a, b)
- return a.mse > b.mse
- end)
- end
- return samples[1].xc, samples[1].yc
- end
- end
- local function color_noise(src)
- local p = 0.1
- src = src:float():div(255)
- local src_t = src:reshape(src:size(1), src:nElement() / src:size(1)):t():contiguous()
- local ce, cv = pcacov(src_t)
- local color_scale = torch.Tensor(3):uniform(1 / (1 + p), 1 + p)
-
- pca_space = torch.mm(src_t, cv):t():contiguous()
- for i = 1, 3 do
- pca_space[i]:mul(color_scale[i])
- end
- x = torch.mm(pca_space:t(), cv:t()):t():contiguous():resizeAs(src)
- x[torch.lt(x, 0.0)] = 0.0
- x[torch.gt(x, 1.0)] = 1.0
-
- return x:mul(255):byte()
- end
- local function shift_1px(src)
- -- reducing the even/odd issue in nearest neighbor.
- local r = torch.random(1, 4)
-
- end
- local function flip_augment(x, y)
- local flip = torch.random(1, 4)
- if y then
- if flip == 1 then
- x = image.hflip(x)
- y = image.hflip(y)
- elseif flip == 2 then
- x = image.vflip(x)
- y = image.vflip(y)
- elseif flip == 3 then
- x = image.hflip(image.vflip(x))
- y = image.hflip(image.vflip(y))
- elseif flip == 4 then
- end
- return x, y
- else
- if flip == 1 then
- x = image.hflip(x)
- elseif flip == 2 then
- x = image.vflip(x)
- elseif flip == 3 then
- x = image.hflip(image.vflip(x))
- elseif flip == 4 then
- end
- return x
- end
- end
- local function overlay_augment(src, p)
- p = p or 0.25
- if torch.uniform() > (1.0 - p) then
- local r = torch.uniform(0.2, 0.8)
- local t = "float"
- if src:type() == "torch.ByteTensor" then
- src = src:float():div(255)
- t = "byte"
- end
- local flip = flip_augment(src)
- flip:mul(r):add(src * (1.0 - r))
- if t == "byte" then
- flip = flip:mul(255):byte()
- end
- return flip
- else
- return src
- end
- end
- local function data_augment(y, options)
- y = flip_augment(y)
- if options.color_noise then
- y = color_noise(y)
- end
- if options.overlay then
- y = overlay_augment(y)
- end
- return y
- end
- local INTERPOLATION_PADDING = 16
- function pairwise_transform.scale(src, scale, size, offset, n, options)
- local filters = {
- "Box","Box", -- 0.012756949974688
- "Blackman", -- 0.013191924552285
- --"Cartom", -- 0.013753536746706
- --"Hanning", -- 0.013761314529647
- --"Hermite", -- 0.013850225205266
- "SincFast", -- 0.014095824314306
- --"Jinc", -- 0.014244299255442
- }
- if options.random_half then
- src = random_half(src)
- end
- local downscale_filter = filters[torch.random(1, #filters)]
- local y = data_augment(crop_if_large(src, math.max(size * 4, 512)), options)
- local down_scale = 1.0 / scale
- local x = iproc.scale(iproc.scale(y, y:size(3) * down_scale,
- y:size(2) * down_scale, downscale_filter),
- y:size(3), y:size(2))
- local batch = {}
- for i = 1, n do
- local xc, yc = active_cropping(x, y,
- size,
- INTERPOLATION_PADDING,
- options.active_cropping_rate,
- options.active_cropping_tries)
- if options.rgb then
- else
- yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
- xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
- end
- table.insert(batch, {xc, image.crop(yc, offset, offset, size - offset, size - offset)})
- end
- return batch
- end
- function pairwise_transform.jpeg_(src, quality, size, offset, n, options)
- local y = data_augment(crop_if_large(src, math.max(size * 4, 512)), options)
- local x = y
- for i = 1, #quality do
- x = gm.Image(x, "RGB", "DHW")
- x:format("jpeg")
- if options.jpeg_sampling_factors == 444 then
- x:samplingFactors({1.0, 1.0, 1.0})
- else -- 420
- x:samplingFactors({2.0, 1.0, 1.0})
- end
- local blob, len = x:toBlob(quality[i])
- x:fromBlob(blob, len)
- x = x:toTensor("byte", "RGB", "DHW")
- end
-
- local batch = {}
- for i = 1, n do
- local xc, yc = active_cropping(x, y, size, 0,
- options.active_cropping_rate,
- options.active_cropping_tries)
- xc, yc = flip_augment(xc, yc)
-
- if options.rgb then
- else
- yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
- xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
- end
- table.insert(batch, {xc, image.crop(yc, offset, offset, size - offset, size - offset)})
- end
- return batch
- end
- function pairwise_transform.jpeg(src, category, level, size, offset, n, options)
- if category == "anime_style_art" then
- if level == 1 then
- if torch.uniform() > 0.8 then
- return pairwise_transform.jpeg_(src, {},
- size, offset, n, options)
- else
- return pairwise_transform.jpeg_(src, {torch.random(65, 85)},
- size, offset, n, options)
- end
- elseif level == 2 then
- local r = torch.uniform()
- if torch.uniform() > 0.8 then
- return pairwise_transform.jpeg_(src, {},
- size, offset, n, options)
- else
- if r > 0.6 then
- return pairwise_transform.jpeg_(src, {torch.random(27, 70)},
- size, offset, n, options)
- elseif r > 0.3 then
- local quality1 = torch.random(37, 70)
- local quality2 = quality1 - torch.random(5, 10)
- return pairwise_transform.jpeg_(src, {quality1, quality2},
- size, offset, n, options)
- else
- local quality1 = torch.random(52, 70)
- local quality2 = quality1 - torch.random(5, 15)
- local quality3 = quality1 - torch.random(15, 25)
-
- return pairwise_transform.jpeg_(src,
- {quality1, quality2, quality3},
- size, offset, n, options)
- end
- end
- else
- error("unknown noise level: " .. level)
- end
- elseif category == "photo" then
- if level == 1 then
- if torch.uniform() > 0.7 then
- return pairwise_transform.jpeg_(src, {},
- size, offset, n,
- options)
- else
- return pairwise_transform.jpeg_(src, {torch.random(80, 95)},
- size, offset, n,
- options)
- end
- elseif level == 2 then
- if torch.uniform() > 0.7 then
- return pairwise_transform.jpeg_(src, {},
- size, offset, n,
- options)
- else
- return pairwise_transform.jpeg_(src, {torch.random(65, 85)},
- size, offset, n,
- options)
- end
- else
- error("unknown noise level: " .. level)
- end
- else
- error("unknown category: " .. category)
- end
- end
- function pairwise_transform.jpeg_scale_(src, scale, quality, size, offset, options)
- if options.random_half then
- src = random_half(src)
- end
- src = crop_if_large(src, math.max(size * 4, 512))
- local down_scale = 1.0 / scale
- local filters = {
- "Box", -- 0.012756949974688
- "Blackman", -- 0.013191924552285
- --"Cartom", -- 0.013753536746706
- --"Hanning", -- 0.013761314529647
- --"Hermite", -- 0.013850225205266
- "SincFast", -- 0.014095824314306
- "Jinc", -- 0.014244299255442
- }
- local downscale_filter = filters[torch.random(1, #filters)]
- local yi = torch.random(INTERPOLATION_PADDING, src:size(2) - size - INTERPOLATION_PADDING)
- local xi = torch.random(INTERPOLATION_PADDING, src:size(3) - size - INTERPOLATION_PADDING)
- local y = src
- local x
-
- if options.color_noise then
- y = color_noise(y)
- end
- if options.overlay then
- y = overlay_augment(y)
- end
-
- x = y
- x = iproc.scale(x, y:size(3) * down_scale, y:size(2) * down_scale, downscale_filter)
- for i = 1, #quality do
- x = gm.Image(x, "RGB", "DHW")
- x:format("jpeg")
- if options.jpeg_sampling_factors == 444 then
- x:samplingFactors({1.0, 1.0, 1.0})
- else -- 422
- x:samplingFactors({2.0, 1.0, 1.0})
- end
- local blob, len = x:toBlob(quality[i])
- x:fromBlob(blob, len)
- x = x:toTensor("byte", "RGB", "DHW")
- end
- x = iproc.scale(x, y:size(3), y:size(2))
- y = image.crop(y,
- xi, yi,
- xi + size, yi + size)
- x = image.crop(x,
- xi, yi,
- xi + size, yi + size)
- x = x:float():div(255)
- y = y:float():div(255)
- x, y = flip_augment(x, y)
- if options.rgb then
- else
- y = image.rgb2yuv(y)[1]:reshape(1, y:size(2), y:size(3))
- x = image.rgb2yuv(x)[1]:reshape(1, x:size(2), x:size(3))
- end
-
- return x, image.crop(y, offset, offset, size - offset, size - offset)
- end
- function pairwise_transform.jpeg_scale(src, scale, category, level, size, offset, options)
- options = options or {color_noise = false, random_half = true}
- if category == "anime_style_art" then
- if level == 1 then
- if torch.uniform() > 0.7 then
- return pairwise_transform.jpeg_scale_(src, scale, {},
- size, offset, options)
- else
- return pairwise_transform.jpeg_scale_(src, scale, {torch.random(65, 85)},
- size, offset, options)
- end
- elseif level == 2 then
- if torch.uniform() > 0.7 then
- return pairwise_transform.jpeg_scale_(src, scale, {},
- size, offset, options)
- else
- local r = torch.uniform()
- if r > 0.6 then
- return pairwise_transform.jpeg_scale_(src, scale, {torch.random(27, 70)},
- size, offset, options)
- elseif r > 0.3 then
- local quality1 = torch.random(37, 70)
- local quality2 = quality1 - torch.random(5, 10)
- return pairwise_transform.jpeg_scale_(src, scale, {quality1, quality2},
- size, offset, options)
- else
- local quality1 = torch.random(52, 70)
- local quality2 = quality1 - torch.random(5, 15)
- local quality3 = quality1 - torch.random(15, 25)
-
- return pairwise_transform.jpeg_scale_(src, scale,
- {quality1, quality2, quality3 },
- size, offset, options)
- end
- end
- else
- error("unknown noise level: " .. level)
- end
- elseif category == "photo" then
- if level == 1 then
- if torch.uniform() > 0.7 then
- return pairwise_transform.jpeg_scale_(src, scale, {},
- size, offset, options)
- else
- return pairwise_transform.jpeg_scale_(src, scale, {torch.random(80, 95)},
- size, offset, options)
- end
- elseif level == 2 then
- return pairwise_transform.jpeg_scale_(src, scale, {torch.random(70, 85)},
- size, offset, options)
- else
- error("unknown noise level: " .. level)
- end
- else
- error("unknown category: " .. category)
- end
- end
- local function test_jpeg()
- local loader = require './image_loader'
- local src = loader.load_byte("../images/miku_CC_BY-NC.jpg")
- for i = 2, 9 do
- local xy = pairwise_transform.jpeg_(random_half(src),
- {i * 10}, 128, 0, 2, {color_noise = false, random_half = true, overlay = true, rgb = true})
- for i = 1, #xy do
- image.display({image = xy[i][1], legend = "y:" .. (i * 10), max=1,min=0})
- image.display({image = xy[i][2], legend = "x:" .. (i * 10),max=1,min=0})
- end
- --print(x:mean(), y:mean())
- end
- end
- local function test_scale()
- torch.setdefaulttensortype('torch.FloatTensor')
- local loader = require './image_loader'
- local src = loader.load_byte("../images/miku_CC_BY-NC.jpg")
- local options = {color_noise = true,
- random_half = true,
- overlay = false,
- active_cropping_rate = 1.5,
- active_cropping_tries = 10,
- rgb = true
- }
- for i = 1, 9 do
- local xy = pairwise_transform.scale(src, 2.0, 128, 7, 1, options)
- image.display({image = xy[1][1], legend = "y:" .. (i * 10), min = 0, max = 1})
- image.display({image = xy[1][2], legend = "x:" .. (i * 10), min = 0, max = 1})
- print(xy[1][1]:size(), xy[1][2]:size())
- --print(x:mean(), y:mean())
- end
- end
- local function test_jpeg_scale()
- torch.setdefaulttensortype('torch.FloatTensor')
- local loader = require './image_loader'
- local src = loader.load_byte("../images/miku_CC_BY-NC.jpg")
- local options = {color_noise = true,
- random_half = true,
- overlay = true,
- active_cropping_ratio = 0.5,
- active_cropping_times = 10
- }
- for i = 1, 9 do
- local y, x = pairwise_transform.jpeg_scale(src, 2.0, 1, 128, 7, options)
- image.display({image = y, legend = "y1:" .. (i * 10), min = 0, max = 1})
- image.display({image = x, legend = "x1:" .. (i * 10), min = 0, max = 1})
- print(y:size(), x:size())
- --print(x:mean(), y:mean())
- end
- for i = 1, 9 do
- local y, x = pairwise_transform.jpeg_scale(src, 2.0, 2, 128, 7, options)
- image.display({image = y, legend = "y2:" .. (i * 10), min = 0, max = 1})
- image.display({image = x, legend = "x2:" .. (i * 10), min = 0, max = 1})
- print(y:size(), x:size())
- --print(x:mean(), y:mean())
- end
- end
- local function test_color_noise()
- torch.setdefaulttensortype('torch.FloatTensor')
- local loader = require './image_loader'
- local src = loader.load_byte("../images/miku_CC_BY-NC.jpg")
- for i = 1, 10 do
- image.display(color_noise(src))
- end
- end
- local function test_overlay()
- torch.setdefaulttensortype('torch.FloatTensor')
- local loader = require './image_loader'
- local src = loader.load_byte("../images/miku_CC_BY-NC.jpg")
- for i = 1, 10 do
- image.display(overlay_augment(src, 1.0))
- end
- end
- --test_scale()
- --test_jpeg()
- --test_jpeg_scale()
- --test_color_noise()
- --test_overlay()
- return pairwise_transform
|