| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238 | require 'pl'require 'cunn'local iproc = require 'iproc'local gm = {}gm.Image = require 'graphicsmagick.Image'local data_augmentation = {}local function pcacov(x)   local mean = torch.mean(x, 1)   local xm = x - torch.ger(torch.ones(x:size(1)), mean:squeeze())   local c = torch.mm(xm:t(), xm)   c:div(x:size(1) - 1)   local ce, cv = torch.symeig(c, 'V')   return ce, cvendfunction data_augmentation.color_noise(src, p, factor)   factor = factor or 0.1   if torch.uniform() < p then      local src, conversion = iproc.byte2float(src)      local src_t = src:reshape(src:size(1), src:nElement() / src:size(1)):t():contiguous()      local ce, cv = pcacov(src_t)      local color_scale = torch.Tensor(3):uniform(1 / (1 + factor), 1 + factor)            pca_space = torch.mm(src_t, cv):t():contiguous()      for i = 1, 3 do	 pca_space[i]:mul(color_scale[i])      end      local dest = torch.mm(pca_space:t(), cv:t()):t():contiguous():resizeAs(src)      dest:clamp(0.0, 1.0)      if conversion then	 dest = iproc.float2byte(dest)      end      return dest   else      return src   endendfunction data_augmentation.overlay(src, p)   if torch.uniform() < p then      local r = torch.uniform()      local src, conversion = iproc.byte2float(src)      src = src:contiguous()      local flip = data_augmentation.flip(src)      flip:mul(r):add(src * (1.0 - r))      if conversion then	 flip = iproc.float2byte(flip)      end      return flip   else      return src   endendfunction data_augmentation.unsharp_mask(src, p)   if torch.uniform() < p then      local radius = 0 -- auto      local sigma = torch.uniform(0.5, 1.5)      local amount = torch.uniform(0.1, 0.9)      local threshold = torch.uniform(0.0, 0.05)      local unsharp = gm.Image(src, "RGB", "DHW"):	 unsharpMask(radius, sigma, amount, threshold):	 toTensor("float", "RGB", "DHW")            if src:type() == "torch.ByteTensor" then	 return iproc.float2byte(unsharp)      else	 return unsharp      end   else      return src   endendfunction data_augmentation.blur(src, p, size, sigma_min, sigma_max)   size = size or "3"   filters = utils.split(size, ",")   for i = 1, #filters do      local s = tonumber(filters[i])      filters[i] = s   end   if torch.uniform() < p then      local src, conversion = iproc.byte2float(src)      local kernel_size = filters[torch.random(1, #filters)]      local sigma      if sigma_min == sigma_max then	 sigma = sigma_min      else	 sigma = torch.uniform(sigma_min, sigma_max)      end      local kernel = iproc.gaussian2d(kernel_size, sigma)      local dest = image.convolve(src, kernel, 'same')      if conversion then	 dest = iproc.float2byte(dest)      end      return dest   else      return src   endendfunction data_augmentation.pairwise_scale(x, y, p, scale_min, scale_max)   if torch.uniform() < p then      assert(x:size(2) == y:size(2) and x:size(3) == y:size(3))      local scale = torch.uniform(scale_min, scale_max)      local h = math.floor(x:size(2) * scale)      local w = math.floor(x:size(3) * scale)      x = iproc.scale(x, w, h, "Triangle")      y = iproc.scale(y, w, h, "Triangle")      return x, y   else      return x, y   endendfunction data_augmentation.pairwise_rotate(x, y, p, r_min, r_max)   if torch.uniform() < p then      assert(x:size(2) == y:size(2) and x:size(3) == y:size(3))      local r = torch.uniform(r_min, r_max) / 360.0 * math.pi      x = iproc.rotate(x, r)      y = iproc.rotate(y, r)      return x, y   else      return x, y   endendfunction data_augmentation.pairwise_negate(x, y, p)   if torch.uniform() < p then      assert(x:size(2) == y:size(2) and x:size(3) == y:size(3))      x = iproc.negate(x)      y = iproc.negate(y)      return x, y   else      return x, y   endendfunction data_augmentation.pairwise_negate_x(x, y, p)   if torch.uniform() < p then      assert(x:size(2) == y:size(2) and x:size(3) == y:size(3))      x = iproc.negate(x)      return x, y   else      return x, y   endendfunction data_augmentation.pairwise_flip(x, y)   local flip = torch.random(1, 4)   local tr = torch.random(1, 2)   local x, conversion = iproc.byte2float(x)   y = iproc.byte2float(y)   x = x:contiguous()   y = y:contiguous()   if tr == 1 then      -- pass   elseif tr == 2 then      x = x:transpose(2, 3):contiguous()      y = y:transpose(2, 3):contiguous()   end   if flip == 1 then      x = iproc.hflip(x)      y = iproc.hflip(y)   elseif flip == 2 then      x = iproc.vflip(x)      y = iproc.vflip(y)   elseif flip == 3 then      x = iproc.hflip(iproc.vflip(x))      y = iproc.hflip(iproc.vflip(y))   elseif flip == 4 then   end   if conversion then      x = iproc.float2byte(x)      y = iproc.float2byte(y)   end   return x, yendfunction data_augmentation.shift_1px(src)   -- reducing the even/odd issue in nearest neighbor scaler.   local direction = torch.random(1, 4)   local x_shift = 0   local y_shift = 0   if direction == 1 then      x_shift = 1      y_shift = 0   elseif direction == 2 then      x_shift = 0      y_shift = 1   elseif direction == 3 then      x_shift = 1      y_shift = 1   elseif flip == 4 then      x_shift = 0      y_shift = 0   end   local w = src:size(3) - x_shift   local h = src:size(2) - y_shift   w = w - (w % 4)   h = h - (h % 4)   local dest = iproc.crop(src, x_shift, y_shift, x_shift + w, y_shift + h)   return destendfunction data_augmentation.flip(src)   local flip = torch.random(1, 4)   local tr = torch.random(1, 2)   local src, conversion = iproc.byte2float(src)   local dest   src = src:contiguous()   if tr == 1 then      -- pass   elseif tr == 2 then      src = src:transpose(2, 3):contiguous()   end   if flip == 1 then      dest = iproc.hflip(src)   elseif flip == 2 then      dest = iproc.vflip(src)   elseif flip == 3 then      dest = iproc.hflip(iproc.vflip(src))   elseif flip == 4 then      dest = src   end   if conversion then      dest = iproc.float2byte(dest)   end   return destendlocal function test_blur()   torch.setdefaulttensortype("torch.FloatTensor")   local image =require 'image'   local src = image.lena()   image.display({image = src, min=0, max=1})   local dest = data_augmentation.blur(src, 1.0, "3,5", 0.5, 0.6)   image.display({image = dest, min=0, max=1})   dest = data_augmentation.blur(src, 1.0, "3", 1.0, 1.0)   image.display({image = dest, min=0, max=1})   dest = data_augmentation.blur(src, 1.0, "5", 0.75, 0.75)   image.display({image = dest, min=0, max=1})end--test_blur()return data_augmentation
 |