123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938 |
- require 'w2nn'
- -- ref: http://arxiv.org/abs/1502.01852
- -- ref: http://arxiv.org/abs/1501.00092
- local srcnn = {}
- local function msra_filler(mod)
- local fin = mod.kW * mod.kH * mod.nInputPlane
- local fout = mod.kW * mod.kH * mod.nOutputPlane
- stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
- mod.weight:normal(0, stdv)
- mod.bias:zero()
- end
- local function identity_filler(mod)
- assert(mod.nInputPlane <= mod.nOutputPlane)
- mod.weight:normal(0, 0.01)
- mod.bias:zero()
- local num_groups = mod.nInputPlane -- fixed
- local filler_value = num_groups / mod.nOutputPlane
- local in_group_size = math.floor(mod.nInputPlane / num_groups)
- local out_group_size = math.floor(mod.nOutputPlane / num_groups)
- local x = math.floor(mod.kW / 2)
- local y = math.floor(mod.kH / 2)
- for i = 0, num_groups - 1 do
- for j = i * out_group_size, (i + 1) * out_group_size - 1 do
- for k = i * in_group_size, (i + 1) * in_group_size - 1 do
- mod.weight[j+1][k+1][y+1][x+1] = filler_value
- end
- end
- end
- end
- function nn.SpatialConvolutionMM:reset(stdv)
- msra_filler(self)
- end
- function nn.SpatialFullConvolution:reset(stdv)
- msra_filler(self)
- end
- function nn.SpatialDilatedConvolution:reset(stdv)
- identity_filler(self)
- end
- if cudnn and cudnn.SpatialConvolution then
- function cudnn.SpatialConvolution:reset(stdv)
- msra_filler(self)
- end
- function cudnn.SpatialFullConvolution:reset(stdv)
- msra_filler(self)
- end
- if cudnn.SpatialDilatedConvolution then
- function cudnn.SpatialDilatedConvolution:reset(stdv)
- identity_filler(self)
- end
- end
- end
- function nn.SpatialConvolutionMM:clearState()
- if self.gradWeight then
- self.gradWeight:resize(self.nOutputPlane, self.nInputPlane * self.kH * self.kW):zero()
- end
- if self.gradBias then
- self.gradBias:resize(self.nOutputPlane):zero()
- end
- return nn.utils.clear(self, 'finput', 'fgradInput', '_input', '_gradOutput', 'output', 'gradInput')
- end
- function srcnn.channels(model)
- if model.w2nn_channels ~= nil then
- return model.w2nn_channels
- else
- return model:get(model:size() - 1).weight:size(1)
- end
- end
- function srcnn.backend(model)
- local conv = model:findModules("cudnn.SpatialConvolution")
- local fullconv = model:findModules("cudnn.SpatialFullConvolution")
- if #conv > 0 or #fullconv > 0 then
- return "cudnn"
- else
- return "cunn"
- end
- end
- function srcnn.color(model)
- local ch = srcnn.channels(model)
- if ch == 3 then
- return "rgb"
- else
- return "y"
- end
- end
- function srcnn.name(model)
- if model.w2nn_arch_name ~= nil then
- return model.w2nn_arch_name
- else
- local conv = model:findModules("nn.SpatialConvolutionMM")
- if #conv == 0 then
- conv = model:findModules("cudnn.SpatialConvolution")
- end
- if #conv == 7 then
- return "vgg_7"
- elseif #conv == 12 then
- return "vgg_12"
- else
- error("unsupported model")
- end
- end
- end
- function srcnn.offset_size(model)
- if model.w2nn_offset ~= nil then
- return model.w2nn_offset
- else
- local name = srcnn.name(model)
- if name:match("vgg_") then
- local conv = model:findModules("nn.SpatialConvolutionMM")
- if #conv == 0 then
- conv = model:findModules("cudnn.SpatialConvolution")
- end
- local offset = 0
- for i = 1, #conv do
- offset = offset + (conv[i].kW - 1) / 2
- end
- return math.floor(offset)
- else
- error("unsupported model")
- end
- end
- end
- function srcnn.scale_factor(model)
- if model.w2nn_scale_factor ~= nil then
- return model.w2nn_scale_factor
- else
- local name = srcnn.name(model)
- if name == "upconv_7" then
- return 2
- elseif name == "upconv_8_4x" then
- return 4
- else
- return 1
- end
- end
- end
- local function SpatialConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
- if backend == "cunn" then
- return nn.SpatialConvolutionMM(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
- elseif backend == "cudnn" then
- return cudnn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
- else
- error("unsupported backend:" .. backend)
- end
- end
- srcnn.SpatialConvolution = SpatialConvolution
- local function SpatialFullConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
- if backend == "cunn" then
- return nn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
- elseif backend == "cudnn" then
- return cudnn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
- else
- error("unsupported backend:" .. backend)
- end
- end
- srcnn.SpatialFullConvolution = SpatialFullConvolution
- local function ReLU(backend)
- if backend == "cunn" then
- return nn.ReLU(true)
- elseif backend == "cudnn" then
- return cudnn.ReLU(true)
- else
- error("unsupported backend:" .. backend)
- end
- end
- srcnn.ReLU = ReLU
- local function Sigmoid(backend)
- if backend == "cunn" then
- return nn.Sigmoid(true)
- elseif backend == "cudnn" then
- return cudnn.Sigmoid(true)
- else
- error("unsupported backend:" .. backend)
- end
- end
- srcnn.ReLU = ReLU
- local function SpatialMaxPooling(backend, kW, kH, dW, dH, padW, padH)
- if backend == "cunn" then
- return nn.SpatialMaxPooling(kW, kH, dW, dH, padW, padH)
- elseif backend == "cudnn" then
- return cudnn.SpatialMaxPooling(kW, kH, dW, dH, padW, padH)
- else
- error("unsupported backend:" .. backend)
- end
- end
- srcnn.SpatialMaxPooling = SpatialMaxPooling
- local function SpatialAveragePooling(backend, kW, kH, dW, dH, padW, padH)
- if backend == "cunn" then
- return nn.SpatialAveragePooling(kW, kH, dW, dH, padW, padH)
- elseif backend == "cudnn" then
- return cudnn.SpatialAveragePooling(kW, kH, dW, dH, padW, padH)
- else
- error("unsupported backend:" .. backend)
- end
- end
- srcnn.SpatialAveragePooling = SpatialAveragePooling
- local function SpatialDilatedConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, dilationW, dilationH)
- if backend == "cunn" then
- return nn.SpatialDilatedConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, dilationW, dilationH)
- elseif backend == "cudnn" then
- if cudnn.SpatialDilatedConvolution then
- -- cudnn v 6
- return cudnn.SpatialDilatedConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, dilationW, dilationH)
- else
- return nn.SpatialDilatedConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, dilationW, dilationH)
- end
- else
- error("unsupported backend:" .. backend)
- end
- end
- srcnn.SpatialDilatedConvolution = SpatialDilatedConvolution
- -- VGG style net(7 layers)
- function srcnn.vgg_7(backend, ch)
- local model = nn.Sequential()
- model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.InplaceClip01())
- model:add(nn.View(-1):setNumInputDims(3))
- model.w2nn_arch_name = "vgg_7"
- model.w2nn_offset = 7
- model.w2nn_scale_factor = 1
- model.w2nn_channels = ch
- --model:cuda()
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
-
- return model
- end
- -- VGG style net(12 layers)
- function srcnn.vgg_12(backend, ch)
- local model = nn.Sequential()
- model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.InplaceClip01())
- model:add(nn.View(-1):setNumInputDims(3))
- model.w2nn_arch_name = "vgg_12"
- model.w2nn_offset = 12
- model.w2nn_scale_factor = 1
- model.w2nn_resize = false
- model.w2nn_channels = ch
- --model:cuda()
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
-
- return model
- end
- -- Dilated Convolution (7 layers)
- function srcnn.dilated_7(backend, ch)
- local model = nn.Sequential()
- model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(nn.SpatialDilatedConvolution(32, 64, 3, 3, 1, 1, 0, 0, 2, 2))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(nn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 0, 0, 2, 2))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(nn.SpatialDilatedConvolution(64, 128, 3, 3, 1, 1, 0, 0, 4, 4))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.InplaceClip01())
- model:add(nn.View(-1):setNumInputDims(3))
- model.w2nn_arch_name = "dilated_7"
- model.w2nn_offset = 12
- model.w2nn_scale_factor = 1
- model.w2nn_resize = false
- model.w2nn_channels = ch
- --model:cuda()
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
-
- return model
- end
- -- Upconvolution
- function srcnn.upconv_7(backend, ch)
- local model = nn.Sequential()
- model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
- model:add(w2nn.InplaceClip01())
- model:add(nn.View(-1):setNumInputDims(3))
- model.w2nn_arch_name = "upconv_7"
- model.w2nn_offset = 14
- model.w2nn_scale_factor = 2
- model.w2nn_resize = true
- model.w2nn_channels = ch
- return model
- end
- -- large version of upconv_7
- -- This model able to beat upconv_7 (PSNR: +0.3 ~ +0.8) but this model is 2x slower than upconv_7.
- function srcnn.upconv_7l(backend, ch)
- local model = nn.Sequential()
- model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 128, 192, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 192, 256, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 256, 512, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialFullConvolution(backend, 512, ch, 4, 4, 2, 2, 3, 3):noBias())
- model:add(w2nn.InplaceClip01())
- model:add(nn.View(-1):setNumInputDims(3))
- model.w2nn_arch_name = "upconv_7l"
- model.w2nn_offset = 14
- model.w2nn_scale_factor = 2
- model.w2nn_resize = true
- model.w2nn_channels = ch
- --model:cuda()
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
- return model
- end
- -- layerwise linear blending with skip connections
- -- Note: PSNR: upconv_7 < skiplb_7 < upconv_7l
- function srcnn.skiplb_7(backend, ch)
- local function skip(backend, i, o)
- local con = nn.Concat(2)
- local conv = nn.Sequential()
- conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 1, 1))
- conv:add(nn.LeakyReLU(0.1, true))
- -- depth concat
- con:add(conv)
- con:add(nn.Identity()) -- skip
- return con
- end
- local model = nn.Sequential()
- model:add(skip(backend, ch, 16))
- model:add(skip(backend, 16+ch, 32))
- model:add(skip(backend, 32+16+ch, 64))
- model:add(skip(backend, 64+32+16+ch, 128))
- model:add(skip(backend, 128+64+32+16+ch, 128))
- model:add(skip(backend, 128+128+64+32+16+ch, 256))
- -- input of last layer = [all layerwise output(contains input layer)].flatten
- model:add(SpatialFullConvolution(backend, 256+128+128+64+32+16+ch, ch, 4, 4, 2, 2, 3, 3):noBias()) -- linear blend
- model:add(w2nn.InplaceClip01())
- model:add(nn.View(-1):setNumInputDims(3))
- model.w2nn_arch_name = "skiplb_7"
- model.w2nn_offset = 14
- model.w2nn_scale_factor = 2
- model.w2nn_resize = true
- model.w2nn_channels = ch
- --model:cuda()
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
- return model
- end
- -- dilated convolution + deconvolution
- -- Note: This model is not better than upconv_7. Maybe becuase of under-fitting.
- function srcnn.dilated_upconv_7(backend, ch)
- local model = nn.Sequential()
- model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(nn.SpatialDilatedConvolution(32, 64, 3, 3, 1, 1, 0, 0, 2, 2))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(nn.SpatialDilatedConvolution(64, 128, 3, 3, 1, 1, 0, 0, 2, 2))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(nn.SpatialDilatedConvolution(128, 128, 3, 3, 1, 1, 0, 0, 2, 2))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
- model:add(w2nn.InplaceClip01())
- model:add(nn.View(-1):setNumInputDims(3))
- model.w2nn_arch_name = "dilated_upconv_7"
- model.w2nn_offset = 20
- model.w2nn_scale_factor = 2
- model.w2nn_resize = true
- model.w2nn_channels = ch
- --model:cuda()
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
- return model
- end
- -- ref: https://arxiv.org/abs/1609.04802
- -- note: no batch-norm, no zero-paading
- function srcnn.srresnet_2x(backend, ch)
- local function resblock(backend)
- local seq = nn.Sequential()
- local con = nn.ConcatTable()
- local conv = nn.Sequential()
- conv:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- conv:add(ReLU(backend))
- conv:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- conv:add(ReLU(backend))
- con:add(conv)
- con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding
- seq:add(con)
- seq:add(nn.CAddTable())
- return seq
- end
- local model = nn.Sequential()
- --model:add(skip(backend, ch, 64 - ch))
- model:add(SpatialConvolution(backend, ch, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(resblock(backend))
- model:add(resblock(backend))
- model:add(resblock(backend))
- model:add(resblock(backend))
- model:add(resblock(backend))
- model:add(resblock(backend))
- model:add(SpatialFullConvolution(backend, 64, 64, 4, 4, 2, 2, 2, 2))
- model:add(ReLU(backend))
- model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.InplaceClip01())
- --model:add(nn.View(-1):setNumInputDims(3))
- model.w2nn_arch_name = "srresnet_2x"
- model.w2nn_offset = 28
- model.w2nn_scale_factor = 2
- model.w2nn_resize = true
- model.w2nn_channels = ch
- --model:cuda()
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
- return model
- end
- -- large version of srresnet_2x. It's current best model but slow.
- function srcnn.resnet_14l(backend, ch)
- local function resblock(backend, i, o)
- local seq = nn.Sequential()
- local con = nn.ConcatTable()
- local conv = nn.Sequential()
- conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 0, 0))
- conv:add(nn.LeakyReLU(0.1, true))
- conv:add(SpatialConvolution(backend, o, o, 3, 3, 1, 1, 0, 0))
- conv:add(nn.LeakyReLU(0.1, true))
- con:add(conv)
- if i == o then
- con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding
- else
- local seq = nn.Sequential()
- seq:add(SpatialConvolution(backend, i, o, 1, 1, 1, 1, 0, 0))
- seq:add(nn.SpatialZeroPadding(-2, -2, -2, -2))
- con:add(seq)
- end
- seq:add(con)
- seq:add(nn.CAddTable())
- return seq
- end
- local model = nn.Sequential()
- model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(resblock(backend, 32, 64))
- model:add(resblock(backend, 64, 64))
- model:add(resblock(backend, 64, 128))
- model:add(resblock(backend, 128, 128))
- model:add(resblock(backend, 128, 256))
- model:add(resblock(backend, 256, 256))
- model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
- model:add(w2nn.InplaceClip01())
- model:add(nn.View(-1):setNumInputDims(3))
- model.w2nn_arch_name = "resnet_14l"
- model.w2nn_offset = 28
- model.w2nn_scale_factor = 2
- model.w2nn_resize = true
- model.w2nn_channels = ch
- --model:cuda()
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
- return model
- end
- -- for segmentation
- function srcnn.fcn_v1(backend, ch)
- -- input_size = 120
- local model = nn.Sequential()
- --i = 120
- --model:cuda()
- --print(model:forward(torch.Tensor(32, ch, i, i):uniform():cuda()):size())
- model:add(SpatialConvolution(backend, ch, 32, 5, 5, 2, 2, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
- model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
- model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
- model:add(SpatialConvolution(backend, 128, 256, 1, 1, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(nn.Dropout(0.5, false, true))
- model:add(SpatialFullConvolution(backend, 256, 128, 2, 2, 2, 2, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialFullConvolution(backend, 128, 128, 2, 2, 2, 2, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 128, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialFullConvolution(backend, 64, 64, 2, 2, 2, 2, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 64, 32, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialFullConvolution(backend, 32, ch, 4, 4, 2, 2, 3, 3))
- model:add(w2nn.InplaceClip01())
- model:add(nn.View(-1):setNumInputDims(3))
- model.w2nn_arch_name = "fcn_v1"
- model.w2nn_offset = 36
- model.w2nn_scale_factor = 1
- model.w2nn_channels = ch
- model.w2nn_input_size = 120
- --model.w2nn_gcn = true
-
- return model
- end
- function srcnn.cupconv_14(backend, ch)
- local function skip(backend, n_input, n_output, pad)
- local con = nn.ConcatTable()
- local conv = nn.Sequential()
- local depad = nn.Sequential()
- conv:add(nn.SelectTable(1))
- conv:add(SpatialConvolution(backend, n_input, n_output, 3, 3, 1, 1, 0, 0))
- conv:add(nn.LeakyReLU(0.1, true))
- con:add(conv)
- con:add(nn.Identity())
- return con
- end
- local function concat(backend, n, ch, n_middle)
- local con = nn.ConcatTable()
- for i = 1, n do
- local pad = i - 1
- if i == 1 then
- con:add(nn.Sequential():add(nn.SelectTable(i)))
- else
- local seq = nn.Sequential()
- seq:add(nn.SelectTable(i))
- if pad > 0 then
- seq:add(nn.SpatialZeroPadding(-pad, -pad, -pad, -pad))
- end
- if i == n then
- --seq:add(SpatialConvolution(backend, ch, n_middle, 1, 1, 1, 1, 0, 0))
- else
- seq:add(w2nn.GradWeight(0.025))
- seq:add(SpatialConvolution(backend, n_middle, n_middle, 1, 1, 1, 1, 0, 0))
- end
- seq:add(nn.LeakyReLU(0.1, true))
- con:add(seq)
- end
- end
- return nn.Sequential():add(con):add(nn.JoinTable(2))
- end
- local model = nn.Sequential()
- local m = 64
- local n = 14
- model:add(nn.ConcatTable():add(nn.Identity()))
- for i = 1, n - 1 do
- if i == 1 then
- model:add(skip(backend, ch, m))
- else
- model:add(skip(backend, m, m))
- end
- end
- model:add(nn.FlattenTable())
- model:add(concat(backend, n, ch, m))
- model:add(SpatialFullConvolution(backend, m * (n - 1) + 3, ch, 4, 4, 2, 2, 3, 3):noBias())
- model:add(w2nn.InplaceClip01())
- model:add(nn.View(-1):setNumInputDims(3))
- model.w2nn_arch_name = "cupconv_14"
- model.w2nn_offset = 28
- model.w2nn_scale_factor = 2
- model.w2nn_channels = ch
- model.w2nn_resize = true
- return model
- end
- function srcnn.upconv_refine(backend, ch)
- local function block(backend, ch)
- local seq = nn.Sequential()
- local con = nn.ConcatTable()
- local res = nn.Sequential()
- local base = nn.Sequential()
- local refine = nn.Sequential()
- local aux_con = nn.ConcatTable()
- res:add(w2nn.GradWeight(0.1))
- res:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
- res:add(nn.LeakyReLU(0.1, true))
- res:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
- res:add(nn.LeakyReLU(0.1, true))
- res:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
- res:add(nn.LeakyReLU(0.1, true))
- res:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0):noBias())
- res:add(w2nn.InplaceClip01())
- res:add(nn.MulConstant(0.5))
- con:add(res)
- con:add(nn.Sequential():add(nn.SpatialZeroPadding(-4, -4, -4, -4)):add(nn.MulConstant(0.5)))
- -- main output
- refine:add(nn.CAddTable()) -- averaging
- refine:add(nn.View(-1):setNumInputDims(3))
- -- aux output
- base:add(nn.SelectTable(2))
- base:add(nn.MulConstant(2)) -- revert mul 0.5
- base:add(nn.View(-1):setNumInputDims(3))
- aux_con:add(refine)
- aux_con:add(base)
- seq:add(con)
- seq:add(aux_con)
- seq:add(w2nn.AuxiliaryLossTable(1))
- return seq
- end
- local model = nn.Sequential()
- model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
- model:add(w2nn.InplaceClip01())
- model:add(block(backend, ch))
- model.w2nn_arch_name = "upconv_refine"
- model.w2nn_offset = 18
- model.w2nn_scale_factor = 2
- model.w2nn_resize = true
- model.w2nn_channels = ch
- return model
- end
- -- cascaded residual channel attention unet
- function srcnn.upcunet(backend, ch)
- function unet_branch(insert, backend, n_input, n_output, depad)
- local block = nn.Sequential()
- local con = nn.ConcatTable(2)
- local model = nn.Sequential()
-
- block:add(SpatialConvolution(backend, n_input, n_input, 2, 2, 2, 2, 0, 0))-- downsampling
- block:add(insert)
- block:add(SpatialFullConvolution(backend, n_output, n_output, 2, 2, 2, 2, 0, 0))-- upsampling
- con:add(nn.SpatialZeroPadding(-depad, -depad, -depad, -depad))
- con:add(block)
- model:add(con)
- model:add(nn.CAddTable())
- return model
- end
- function unet_conv(n_input, n_middle, n_output, se)
- local model = nn.Sequential()
- model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- if se then
- -- Squeeze and Excitation Networks
- local con = nn.ConcatTable(2)
- local attention = nn.Sequential()
- attention:add(nn.SpatialAdaptiveAveragePooling(1, 1)) -- global average pooling
- attention:add(SpatialConvolution(backend, n_output, math.floor(n_output / 4), 1, 1, 1, 1, 0, 0))
- attention:add(nn.ReLU(true))
- attention:add(SpatialConvolution(backend, math.floor(n_output / 4), n_output, 1, 1, 1, 1, 0, 0))
- attention:add(nn.Sigmoid(true))
- con:add(nn.Identity())
- con:add(attention)
- model:add(con)
- model:add(w2nn.ScaleTable())
- end
- return model
- end
- -- Residual U-Net
- function unet(backend, ch, deconv)
- local block1 = unet_conv(128, 256, 128, true)
- local block2 = nn.Sequential()
- block2:add(unet_conv(64, 64, 128, true))
- block2:add(unet_branch(block1, backend, 128, 128, 4))
- block2:add(unet_conv(128, 64, 64, true))
- local model = nn.Sequential()
- model:add(unet_conv(ch, 32, 64, false))
- model:add(unet_branch(block2, backend, 64, 64, 16))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1))
- if deconv then
- model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
- else
- model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
- end
- return model
- end
- local model = nn.Sequential()
- local con = nn.ConcatTable()
- local aux_con = nn.ConcatTable()
- -- 2 cascade
- model:add(unet(backend, ch, true))
- con:add(unet(backend, ch, false))
- con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
- aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
- aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output
- model:add(con)
- model:add(aux_con)
- model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
-
- model.w2nn_arch_name = "upcunet"
- model.w2nn_offset = 60
- model.w2nn_scale_factor = 2
- model.w2nn_channels = ch
- model.w2nn_resize = true
- -- 72, 128, 256 are valid
- --model.w2nn_input_size = 128
- return model
- end
- -- cascaded residual spatial channel attention unet
- function srcnn.upcunet_v2(backend, ch)
- function unet_branch(insert, backend, n_input, n_output, depad)
- local block = nn.Sequential()
- local con = nn.ConcatTable(2)
- local model = nn.Sequential()
-
- block:add(SpatialConvolution(backend, n_input, n_input, 2, 2, 2, 2, 0, 0))-- downsampling
- block:add(insert)
- block:add(SpatialFullConvolution(backend, n_output, n_output, 2, 2, 2, 2, 0, 0))-- upsampling
- con:add(nn.SpatialZeroPadding(-depad, -depad, -depad, -depad))
- con:add(block)
- model:add(con)
- model:add(nn.CAddTable())
- return model
- end
- function unet_conv(n_input, n_middle, n_output, se)
- local model = nn.Sequential()
- model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
- model:add(nn.LeakyReLU(0.1, true))
- if se then
- -- Spatial Squeeze and Excitation Networks
- local se_fac = 4
- local con = nn.ConcatTable(2)
- local attention = nn.Sequential()
- attention:add(SpatialAveragePooling(backend, 4, 4, 4, 4))
- attention:add(SpatialConvolution(backend, n_output, math.floor(n_output / se_fac), 1, 1, 1, 1, 0, 0))
- attention:add(nn.ReLU(true))
- attention:add(SpatialConvolution(backend, math.floor(n_output / se_fac), n_output, 1, 1, 1, 1, 0, 0))
- attention:add(nn.Sigmoid(true)) -- don't use cudnn sigmoid
- attention:add(nn.SpatialUpSamplingNearest(4, 4))
- con:add(nn.Identity())
- con:add(attention)
- model:add(con)
- model:add(nn.CMulTable())
- end
- return model
- end
- -- Residual U-Net
- function unet(backend, in_ch, out_ch, deconv)
- local block1 = unet_conv(128, 256, 128, true)
- local block2 = nn.Sequential()
- block2:add(unet_conv(64, 64, 128, true))
- block2:add(unet_branch(block1, backend, 128, 128, 4))
- block2:add(unet_conv(128, 64, 64, true))
- local model = nn.Sequential()
- model:add(unet_conv(in_ch, 32, 64, false))
- model:add(unet_branch(block2, backend, 64, 64, 16))
- if deconv then
- model:add(SpatialFullConvolution(backend, 64, out_ch, 4, 4, 2, 2, 3, 3):noBias())
- else
- model:add(SpatialConvolution(backend, 64, out_ch, 3, 3, 1, 1, 0, 0):noBias())
- end
- return model
- end
- local model = nn.Sequential()
- local con = nn.ConcatTable()
- local aux_con = nn.ConcatTable()
- -- 2 cascade
- model:add(unet(backend, ch, ch, true))
- con:add(nn.Sequential():add(unet(backend, ch, ch, false)):add(nn.SpatialZeroPadding(-1, -1, -1, -1))) -- -1 for odd output size
- con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
- aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
- aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output
- model:add(con)
- model:add(aux_con)
- model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
-
- model.w2nn_arch_name = "upcunet_v2"
- model.w2nn_offset = 58
- model.w2nn_scale_factor = 2
- model.w2nn_channels = ch
- model.w2nn_resize = true
- -- {76,92,108,140} are also valid size but it is too small
- model.w2nn_valid_input_size = {156,172,188,204,220,236,252,268,284,300,316,332,348,364,380,396,412,428,444,460,476,492,508}
- return model
- end
- local function bench()
- local sys = require 'sys'
- cudnn.benchmark = false
- local model = nil
- local arch = {"upconv_7", "upcunet", "upcunet_v2"}
- local backend = "cunn"
- for k = 1, #arch do
- model = srcnn[arch[k]](backend, 3):cuda()
- model:training()
- t = sys.clock()
- for i = 1, 10 do
- model:forward(torch.Tensor(1, 3, 172, 172):zero():cuda())
- end
- print(arch[k], sys.clock() - t)
- end
- end
- function srcnn.create(model_name, backend, color)
- model_name = model_name or "vgg_7"
- backend = backend or "cunn"
- color = color or "rgb"
- local ch = 3
- if color == "rgb" then
- ch = 3
- elseif color == "y" then
- ch = 1
- else
- error("unsupported color: " .. color)
- end
- if srcnn[model_name] then
- local model = srcnn[model_name](backend, ch)
- assert(model.w2nn_offset % model.w2nn_scale_factor == 0)
- return model
- else
- error("unsupported model_name: " .. model_name)
- end
- end
- --[[
- local model = srcnn.cunet_v3("cunn", 3):cuda()
- print(model)
- model:training()
- print(model:forward(torch.Tensor(1, 3, 144, 144):zero():cuda()):size())
- local model = srcnn.upcunet_v2("cunn", 3):cuda()
- print(model)
- model:training()
- print(model:forward(torch.Tensor(1, 3, 76, 76):zero():cuda()))
- os.exit()
- --]]
- return srcnn
|