| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 | require 'image'local gm = require 'graphicsmagick'local iproc = require 'iproc'local data_augmentation = require 'data_augmentation'local pairwise_transform = {}local function random_half(src, p)   p = p or 0.25   --local filter = ({"Box","Blackman", "SincFast", "Jinc"})[torch.random(1, 4)]   local filter = "Box"   if p < torch.uniform() and (src:size(2) > 768 and src:size(3) > 1024) then      return iproc.scale(src, src:size(3) * 0.5, src:size(2) * 0.5, filter)   else      return src   endendlocal function crop_if_large(src, max_size)   local tries = 4   if src:size(2) > max_size and src:size(3) > max_size then      local rect      for i = 1, tries do	 local yi = torch.random(0, src:size(2) - max_size)	 local xi = torch.random(0, src:size(3) - max_size)	 rect = iproc.crop(src, xi, yi, xi + max_size, yi + max_size)	 -- ignore simple background	 if rect:float():std() >= 0 then	    break	 end      end      return rect   else      return src   endendlocal function preprocess(src, crop_size, options)   local dest = src   if options.random_half then      dest = random_half(dest)   end   dest = crop_if_large(dest, math.max(crop_size * 2, options.max_size))   dest = data_augmentation.flip(dest)   if options.color_noise then      dest = data_augmentation.color_noise(dest)   end   if options.overlay then      dest = data_augmentation.overlay(dest)   end   dest = data_augmentation.shift_1px(dest)      return destendlocal function active_cropping(x, y, size, p, tries)   assert("x:size == y:size", x:size(2) == y:size(2) and x:size(3) == y:size(3))   local r = torch.uniform()   if p < r then      local xi = torch.random(0, y:size(3) - (size + 1))      local yi = torch.random(0, y:size(2) - (size + 1))      local xc = iproc.crop(x, xi, yi, xi + size, yi + size)      local yc = iproc.crop(y, xi, yi, xi + size, yi + size)      return xc, yc   else      local samples = {}      local best_se = 0.0      local best_xc, best_yc      local m = torch.FloatTensor(x:size(1), size, size)      for i = 1, tries do	 local xi = torch.random(0, y:size(3) - (size + 1))	 local yi = torch.random(0, y:size(2) - (size + 1))	 local xc = iproc.crop(x, xi, yi, xi + size, yi + size)	 local yc = iproc.crop(y, xi, yi, xi + size, yi + size)	 local xcf = iproc.byte2float(xc)	 local ycf = iproc.byte2float(yc)	 local se = m:copy(xcf):add(-1.0, ycf):pow(2):sum()	 if se >= best_se then	    best_xc = xcf	    best_yc = ycf	    best_se = se	 end      end      return best_xc, best_yc   endendfunction pairwise_transform.scale(src, scale, size, offset, n, options)   local filters = {      "Box","Box",  -- 0.012756949974688      "Blackman",   -- 0.013191924552285      --"Cartom",     -- 0.013753536746706      --"Hanning",    -- 0.013761314529647      --"Hermite",    -- 0.013850225205266      "SincFast",   -- 0.014095824314306      "Jinc",       -- 0.014244299255442   }   local unstable_region_offset = 8   local downscale_filter = filters[torch.random(1, #filters)]   local y = preprocess(src, size, options)   assert(y:size(2) % 4 == 0 and y:size(3) % 4 == 0)   local down_scale = 1.0 / scale   local x = iproc.scale(iproc.scale(y, y:size(3) * down_scale,				     y:size(2) * down_scale, downscale_filter),			 y:size(3), y:size(2))   x = iproc.crop(x, unstable_region_offset, unstable_region_offset,		  x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)   y = iproc.crop(y, unstable_region_offset, unstable_region_offset,		  y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)   assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)   assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))      local batch = {}   for i = 1, n do      local xc, yc = active_cropping(x, y,				     size,				     options.active_cropping_rate,				     options.active_cropping_tries)      xc = iproc.byte2float(xc)      yc = iproc.byte2float(yc)      if options.rgb then      else	 yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))	 xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))      end      table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})   end   return batchendfunction pairwise_transform.jpeg_(src, quality, size, offset, n, options)   local unstable_region_offset = 8   local y = preprocess(src, size, options)   local x = y   for i = 1, #quality do      x = gm.Image(x, "RGB", "DHW")      x:format("jpeg")      if options.jpeg_sampling_factors == 444 then	 x:samplingFactors({1.0, 1.0, 1.0})      else -- 420	 x:samplingFactors({2.0, 1.0, 1.0})      end      local blob, len = x:toBlob(quality[i])      x:fromBlob(blob, len)      x = x:toTensor("byte", "RGB", "DHW")   end   x = iproc.crop(x, unstable_region_offset, unstable_region_offset,		  x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)   y = iproc.crop(y, unstable_region_offset, unstable_region_offset,		  y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)   assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)   assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))      local batch = {}   for i = 1, n do      local xc, yc = active_cropping(x, y, size,				     options.active_cropping_rate,				     options.active_cropping_tries)      xc = iproc.byte2float(xc)      yc = iproc.byte2float(yc)      if options.rgb then      else	 yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))	 xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))      end      table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})   end   return batchendfunction pairwise_transform.jpeg(src, category, level, size, offset, n, options)   if category == "anime_style_art" then      if level == 1 then	 if torch.uniform() > 0.8 then	    return pairwise_transform.jpeg_(src, {},					    size, offset, n, options)	 else	    return pairwise_transform.jpeg_(src, {torch.random(65, 85)},					    size, offset, n, options)	 end      elseif level == 2 then	 local r = torch.uniform()	 if torch.uniform() > 0.9 then	    return pairwise_transform.jpeg_(src, {},					    size, offset, n, options)	 else	    if r > 0.6 then	       return pairwise_transform.jpeg_(src, {torch.random(27, 70)},					       size, offset, n, options)	    elseif r > 0.3 then	       local quality1 = torch.random(37, 70)	       local quality2 = quality1 - torch.random(5, 10)	       return pairwise_transform.jpeg_(src, {quality1, quality2},					       size, offset, n, options)	    else	       local quality1 = torch.random(52, 70)	       local quality2 = quality1 - torch.random(5, 15)	       local quality3 = quality1 - torch.random(15, 25)	       	       return pairwise_transform.jpeg_(src, 					       {quality1, quality2, quality3},					       size, offset, n, options)	    end	 end      else	 error("unknown noise level: " .. level)      end   elseif category == "photo" then      if level == 1 then	 if torch.uniform() > 0.7 then	    return pairwise_transform.jpeg_(src, {},					    size, offset, n,					    options)	 else	    return pairwise_transform.jpeg_(src, {torch.random(80, 95)},					    size, offset, n,					    options)	 end      elseif level == 2 then	 if torch.uniform() > 0.7 then	    return pairwise_transform.jpeg_(src, {},					    size, offset, n,					    options)	 else	    return pairwise_transform.jpeg_(src, {torch.random(65, 85)},					    size, offset, n,					    options)	 end      else	 error("unknown noise level: " .. level)      end   else      error("unknown category: " .. category)   endendfunction pairwise_transform.test_jpeg(src)   local options = {color_noise = true,		    random_half = true,		    overlay = true,		    active_cropping_rate = 0.5,		    active_cropping_tries = 10,		    rgb = true   }   for i = 1, 9 do      local xy = pairwise_transform.jpeg(src,					 "anime_style_art",					 torch.random(1, 2),					 128, 7, 1, options)      image.display({image = xy[1][1], legend = "y:" .. (i * 10), min=0, max=1})      image.display({image = xy[1][2], legend = "x:" .. (i * 10), min=0, max=1})   endendfunction pairwise_transform.test_scale(src)   local options = {color_noise = true,		    random_half = true,		    overlay = true,		    active_cropping_rate = 0.5,		    active_cropping_tries = 10,		    rgb = true   }   for i = 1, 10 do      local xy = pairwise_transform.scale(src, 2.0, 128, 7, 1, options)      image.display({image = xy[1][1], legend = "y:" .. (i * 10), min = 0, max = 1})      image.display({image = xy[1][2], legend = "x:" .. (i * 10), min = 0, max = 1})   endendreturn pairwise_transform
 |