| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 | nn.Sequential {  [input -> (1) -> (2) -> (3) -> (4) -> output]  (1): nn.Sequential {    [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]    (1): nn.Sequential {      [input -> (1) -> (2) -> (3) -> (4) -> output]      (1): nn.SpatialConvolutionMM(3 -> 32, 3x3)      (2): nn.LeakyReLU(0.1)      (3): nn.SpatialConvolutionMM(32 -> 64, 3x3)      (4): nn.LeakyReLU(0.1)    }    (2): nn.Sequential {      [input -> (1) -> (2) -> output]      (1): nn.ConcatTable {        input          |`-> (1): nn.Sequential {          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]          |      (1): nn.SpatialConvolutionMM(64 -> 64, 2x2, 2,2)          |      (2): nn.LeakyReLU(0.1)          |      (3): nn.Sequential {          |        [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]          |        (1): nn.SpatialConvolutionMM(64 -> 128, 3x3)          |        (2): nn.LeakyReLU(0.1)          |        (3): nn.SpatialConvolutionMM(128 -> 64, 3x3)          |        (4): nn.LeakyReLU(0.1)          |        (5): nn.ConcatTable {          |          input          |            |`-> (1): nn.Identity          |             `-> (2): nn.Sequential {          |                   [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]          |                   (1): nn.Sequential {          |                     [input -> (1) -> (2) -> (3) -> output]          |                     (1): nn.Mean          |                     (2): nn.Mean          |                     (3): nn.View(-1, 64, 1, 1)          |                   }          |                   (2): nn.SpatialConvolutionMM(64 -> 8, 1x1)          |                   (3): nn.ReLU          |                   (4): nn.SpatialConvolutionMM(8 -> 64, 1x1)          |                   (5): nn.Sigmoid          |                 }          |             ... -> output          |        }          |        (6): w2nn.ScaleTable          |      }          |      (4): nn.SpatialFullConvolution(64 -> 64, 2x2, 2,2)          |      (5): nn.LeakyReLU(0.1)          |    }           `-> (2): nn.SpatialZeroPadding(l=-4, r=-4, t=-4, b=-4)           ... -> output      }      (2): nn.CAddTable    }    (3): nn.SpatialConvolutionMM(64 -> 64, 3x3)    (4): nn.LeakyReLU(0.1)    (5): nn.SpatialConvolutionMM(64 -> 3, 3x3)  }  (2): nn.ConcatTable {    input      |`-> (1): nn.Sequential {      |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]      |      (1): nn.Sequential {      |        [input -> (1) -> (2) -> (3) -> (4) -> output]      |        (1): nn.SpatialConvolutionMM(3 -> 32, 3x3)      |        (2): nn.LeakyReLU(0.1)      |        (3): nn.SpatialConvolutionMM(32 -> 64, 3x3)      |        (4): nn.LeakyReLU(0.1)      |      }      |      (2): nn.Sequential {      |        [input -> (1) -> (2) -> output]      |        (1): nn.ConcatTable {      |          input      |            |`-> (1): nn.Sequential {      |            |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]      |            |      (1): nn.SpatialConvolutionMM(64 -> 64, 2x2, 2,2)      |            |      (2): nn.LeakyReLU(0.1)      |            |      (3): nn.Sequential {      |            |        [input -> (1) -> (2) -> (3) -> output]      |            |        (1): nn.Sequential {      |            |          [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]      |            |          (1): nn.SpatialConvolutionMM(64 -> 64, 3x3)      |            |          (2): nn.LeakyReLU(0.1)      |            |          (3): nn.SpatialConvolutionMM(64 -> 128, 3x3)      |            |          (4): nn.LeakyReLU(0.1)      |            |          (5): nn.ConcatTable {      |            |            input      |            |              |`-> (1): nn.Identity      |            |               `-> (2): nn.Sequential {      |            |                     [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]      |            |                     (1): nn.Sequential {      |            |                       [input -> (1) -> (2) -> (3) -> output]      |            |                       (1): nn.Mean      |            |                       (2): nn.Mean      |            |                       (3): nn.View(-1, 128, 1, 1)      |            |                     }      |            |                     (2): nn.SpatialConvolutionMM(128 -> 16, 1x1)      |            |                     (3): nn.ReLU      |            |                     (4): nn.SpatialConvolutionMM(16 -> 128, 1x1)      |            |                     (5): nn.Sigmoid      |            |                   }      |            |               ... -> output      |            |          }      |            |          (6): w2nn.ScaleTable      |            |        }      |            |        (2): nn.Sequential {      |            |          [input -> (1) -> (2) -> output]      |            |          (1): nn.ConcatTable {      |            |            input      |            |              |`-> (1): nn.Sequential {      |            |              |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]      |            |              |      (1): nn.SpatialConvolutionMM(128 -> 128, 2x2, 2,2)      |            |              |      (2): nn.LeakyReLU(0.1)      |            |              |      (3): nn.Sequential {      |            |              |        [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]      |            |              |        (1): nn.SpatialConvolutionMM(128 -> 256, 3x3)      |            |              |        (2): nn.LeakyReLU(0.1)      |            |              |        (3): nn.SpatialConvolutionMM(256 -> 128, 3x3)      |            |              |        (4): nn.LeakyReLU(0.1)      |            |              |        (5): nn.ConcatTable {      |            |              |          input      |            |              |            |`-> (1): nn.Identity      |            |              |             `-> (2): nn.Sequential {      |            |              |                   [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]      |            |              |                   (1): nn.Sequential {      |            |              |                     [input -> (1) -> (2) -> (3) -> output]      |            |              |                     (1): nn.Mean      |            |              |                     (2): nn.Mean      |            |              |                     (3): nn.View(-1, 128, 1, 1)      |            |              |                   }      |            |              |                   (2): nn.SpatialConvolutionMM(128 -> 16, 1x1)      |            |              |                   (3): nn.ReLU      |            |              |                   (4): nn.SpatialConvolutionMM(16 -> 128, 1x1)      |            |              |                   (5): nn.Sigmoid      |            |              |                 }      |            |              |             ... -> output      |            |              |        }      |            |              |        (6): w2nn.ScaleTable      |            |              |      }      |            |              |      (4): nn.SpatialFullConvolution(128 -> 128, 2x2, 2,2)      |            |              |      (5): nn.LeakyReLU(0.1)      |            |              |    }      |            |               `-> (2): nn.SpatialZeroPadding(l=-4, r=-4, t=-4, b=-4)      |            |               ... -> output      |            |          }      |            |          (2): nn.CAddTable      |            |        }      |            |        (3): nn.Sequential {      |            |          [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]      |            |          (1): nn.SpatialConvolutionMM(128 -> 64, 3x3)      |            |          (2): nn.LeakyReLU(0.1)      |            |          (3): nn.SpatialConvolutionMM(64 -> 64, 3x3)      |            |          (4): nn.LeakyReLU(0.1)      |            |          (5): nn.ConcatTable {      |            |            input      |            |              |`-> (1): nn.Identity      |            |               `-> (2): nn.Sequential {      |            |                     [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]      |            |                     (1): nn.Sequential {      |            |                       [input -> (1) -> (2) -> (3) -> output]      |            |                       (1): nn.Mean      |            |                       (2): nn.Mean      |            |                       (3): nn.View(-1, 64, 1, 1)      |            |                     }      |            |                     (2): nn.SpatialConvolutionMM(64 -> 8, 1x1)      |            |                     (3): nn.ReLU      |            |                     (4): nn.SpatialConvolutionMM(8 -> 64, 1x1)      |            |                     (5): nn.Sigmoid      |            |                   }      |            |               ... -> output      |            |          }      |            |          (6): w2nn.ScaleTable      |            |        }      |            |      }      |            |      (4): nn.SpatialFullConvolution(64 -> 64, 2x2, 2,2)      |            |      (5): nn.LeakyReLU(0.1)      |            |    }      |             `-> (2): nn.SpatialZeroPadding(l=-16, r=-16, t=-16, b=-16)      |             ... -> output      |        }      |        (2): nn.CAddTable      |      }      |      (3): nn.SpatialConvolutionMM(64 -> 64, 3x3)      |      (4): nn.LeakyReLU(0.1)      |      (5): nn.SpatialConvolutionMM(64 -> 3, 3x3)      |    }       `-> (2): nn.SpatialZeroPadding(l=-20, r=-20, t=-20, b=-20)       ... -> output  }  (3): nn.ConcatTable {    input      |`-> (1): nn.Sequential {      |      [input -> (1) -> (2) -> output]      |      (1): nn.CAddTable      |      (2): w2nn.InplaceClip01      |    }       `-> (2): nn.Sequential {             [input -> (1) -> (2) -> output]             (1): nn.SelectTable(2)             (2): w2nn.InplaceClip01           }       ... -> output  }  (4): w2nn.AuxiliaryLossTable}
 |