minibatch_adam.lua 2.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. require 'optim'
  2. require 'cutorch'
  3. require 'xlua'
  4. local function minibatch_adam(model, criterion, eval_metric,
  5. train_x, train_y,
  6. config)
  7. local parameters, gradParameters = model:getParameters()
  8. config = config or {}
  9. if config.xEvalCount == nil then
  10. config.xEvalCount = 0
  11. config.learningRate = config.xLearningRate
  12. end
  13. local sum_psnr = 0
  14. local sum_loss = 0
  15. local sum_eval = 0
  16. local count_loss = 0
  17. local batch_size = config.xBatchSize or 32
  18. local shuffle = torch.randperm(train_x:size(1))
  19. local c = 1
  20. local inputs_tmp = torch.Tensor(batch_size,
  21. train_x:size(2), train_x:size(3), train_x:size(4)):zero()
  22. local targets_tmp = torch.Tensor(batch_size,
  23. train_y:size(2)):zero()
  24. local inputs = inputs_tmp:clone():cuda()
  25. local targets = targets_tmp:clone():cuda()
  26. local instance_loss = torch.Tensor(train_x:size(1)):zero()
  27. print("## update")
  28. for t = 1, train_x:size(1), batch_size do
  29. if t + batch_size -1 > train_x:size(1) then
  30. break
  31. end
  32. for i = 1, batch_size do
  33. inputs_tmp[i]:copy(train_x[shuffle[t + i - 1]])
  34. targets_tmp[i]:copy(train_y[shuffle[t + i - 1]])
  35. end
  36. inputs:copy(inputs_tmp)
  37. targets:copy(targets_tmp)
  38. local feval = function(x)
  39. if x ~= parameters then
  40. parameters:copy(x)
  41. end
  42. gradParameters:zero()
  43. local output = model:forward(inputs)
  44. local f = criterion:forward(output, targets)
  45. local se = 0
  46. if config.xInstanceLoss then
  47. for i = 1, batch_size do
  48. local el = eval_metric:forward(output[i], targets[i])
  49. se = se + el
  50. instance_loss[shuffle[t + i - 1]] = el
  51. end
  52. se = (se / batch_size)
  53. else
  54. se = eval_metric:forward(output, targets)
  55. end
  56. sum_psnr = sum_psnr + (10 * math.log10(1 / (se + 1.0e-6)))
  57. sum_eval = sum_eval + se
  58. sum_loss = sum_loss + f
  59. count_loss = count_loss + 1
  60. model:backward(inputs, criterion:backward(output, targets))
  61. return f, gradParameters
  62. end
  63. optim.adam(feval, parameters, config)
  64. config.xEvalCount = config.xEvalCount + batch_size
  65. config.learningRate = config.xLearningRate / (1 + config.xEvalCount * config.xLearningRateDecay)
  66. c = c + 1
  67. if c % 50 == 0 then
  68. collectgarbage()
  69. xlua.progress(t, train_x:size(1))
  70. end
  71. end
  72. xlua.progress(train_x:size(1), train_x:size(1))
  73. return { loss = sum_loss / count_loss, MSE = sum_eval / count_loss, PSNR = sum_psnr / count_loss}, instance_loss
  74. end
  75. return minibatch_adam