| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 | 
							- require 'image'
 
- local gm = require 'graphicsmagick'
 
- local iproc = require 'iproc'
 
- local data_augmentation = require 'data_augmentation'
 
- local pairwise_transform = {}
 
- local function random_half(src, p)
 
-    if torch.uniform() < p then
 
-       local filter = ({"Box","Box","Blackman","Sinc","Lanczos", "Catrom"})[torch.random(1, 6)]
 
-       return iproc.scale(src, src:size(3) * 0.5, src:size(2) * 0.5, filter)
 
-    else
 
-       return src
 
-    end
 
- end
 
- local function crop_if_large(src, max_size)
 
-    local tries = 4
 
-    if src:size(2) > max_size and src:size(3) > max_size then
 
-       local rect
 
-       for i = 1, tries do
 
- 	 local yi = torch.random(0, src:size(2) - max_size)
 
- 	 local xi = torch.random(0, src:size(3) - max_size)
 
- 	 rect = iproc.crop(src, xi, yi, xi + max_size, yi + max_size)
 
- 	 -- ignore simple background
 
- 	 if rect:float():std() >= 0 then
 
- 	    break
 
- 	 end
 
-       end
 
-       return rect
 
-    else
 
-       return src
 
-    end
 
- end
 
- local function preprocess(src, crop_size, options)
 
-    local dest = src
 
-    dest = random_half(dest, options.random_half_rate)
 
-    dest = crop_if_large(dest, math.max(crop_size * 2, options.max_size))
 
-    dest = data_augmentation.flip(dest)
 
-    dest = data_augmentation.color_noise(dest, options.random_color_noise_rate)
 
-    dest = data_augmentation.overlay(dest, options.random_overlay_rate)
 
-    dest = data_augmentation.unsharp_mask(dest, options.random_unsharp_mask_rate)
 
-    dest = data_augmentation.shift_1px(dest)
 
-    
 
-    return dest
 
- end
 
- local function active_cropping(x, y, size, p, tries)
 
-    assert("x:size == y:size", x:size(2) == y:size(2) and x:size(3) == y:size(3))
 
-    local r = torch.uniform()
 
-    local t = "float"
 
-    if x:type() == "torch.ByteTensor" then
 
-       t = "byte"
 
-    end
 
-    if p < r then
 
-       local xi = torch.random(0, y:size(3) - (size + 1))
 
-       local yi = torch.random(0, y:size(2) - (size + 1))
 
-       local xc = iproc.crop(x, xi, yi, xi + size, yi + size)
 
-       local yc = iproc.crop(y, xi, yi, xi + size, yi + size)
 
-       return xc, yc
 
-    else
 
-       local lowres = gm.Image(x, "RGB", "DHW"):
 
- 	 size(x:size(3) * 0.5, x:size(2) * 0.5, "Box"):
 
- 	 size(x:size(3), x:size(2), "Box"):
 
- 	 toTensor(t, "RGB", "DHW")
 
-       local best_se = 0.0
 
-       local best_xc, best_yc
 
-       local m = torch.FloatTensor(x:size(1), size, size)
 
-       for i = 1, tries do
 
- 	 local xi = torch.random(0, y:size(3) - (size + 1))
 
- 	 local yi = torch.random(0, y:size(2) - (size + 1))
 
- 	 local xc = iproc.crop(x, xi, yi, xi + size, yi + size)
 
- 	 local lc = iproc.crop(lowres, xi, yi, xi + size, yi + size)
 
- 	 local xcf = iproc.byte2float(xc)
 
- 	 local lcf = iproc.byte2float(lc)
 
- 	 local se = m:copy(xcf):add(-1.0, lcf):pow(2):sum()
 
- 	 if se >= best_se then
 
- 	    best_xc = xcf
 
- 	    best_yc = iproc.byte2float(iproc.crop(y, xi, yi, xi + size, yi + size))
 
- 	    best_se = se
 
- 	 end
 
-       end
 
-       return best_xc, best_yc
 
-    end
 
- end
 
- function pairwise_transform.scale(src, scale, size, offset, n, options)
 
-    local filters;
 
-    if options.style == "photo" then
 
-       filters = {
 
- 	 "Box", "lanczos", "Catrom"
 
-       }
 
-    else
 
-       filters = {
 
- 	 "Box","Box",  -- 0.012756949974688
 
- 	 "Blackman",   -- 0.013191924552285
 
- 	 --"Catrom",     -- 0.013753536746706
 
- 	 --"Hanning",    -- 0.013761314529647
 
- 	 --"Hermite",    -- 0.013850225205266
 
- 	 "Sinc",   -- 0.014095824314306
 
- 	 "Lanczos",       -- 0.014244299255442
 
-       }
 
-    end
 
-    local unstable_region_offset = 8
 
-    local downscale_filter = filters[torch.random(1, #filters)]
 
-    local y = preprocess(src, size, options)
 
-    assert(y:size(2) % 4 == 0 and y:size(3) % 4 == 0)
 
-    local down_scale = 1.0 / scale
 
-    local x = iproc.scale(iproc.scale(y, y:size(3) * down_scale,
 
- 				     y:size(2) * down_scale, downscale_filter),
 
- 			 y:size(3), y:size(2))
 
-    x = iproc.crop(x, unstable_region_offset, unstable_region_offset,
 
- 		  x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)
 
-    y = iproc.crop(y, unstable_region_offset, unstable_region_offset,
 
- 		  y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)
 
-    assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)
 
-    assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))
 
-    
 
-    local batch = {}
 
-    for i = 1, n do
 
-       local xc, yc = active_cropping(x, y,
 
- 				     size,
 
- 				     options.active_cropping_rate,
 
- 				     options.active_cropping_tries)
 
-       xc = iproc.byte2float(xc)
 
-       yc = iproc.byte2float(yc)
 
-       if options.rgb then
 
-       else
 
- 	 yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
 
- 	 xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
 
-       end
 
-       table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
 
-    end
 
-    return batch
 
- end
 
- function pairwise_transform.jpeg_(src, quality, size, offset, n, options)
 
-    local unstable_region_offset = 8
 
-    local y = preprocess(src, size, options)
 
-    local x = y
 
-    for i = 1, #quality do
 
-       x = gm.Image(x, "RGB", "DHW")
 
-       x:format("jpeg"):depth(8)
 
-       if torch.uniform() < options.jpeg_chroma_subsampling_rate then
 
- 	 -- YUV 420
 
- 	 x:samplingFactors({2.0, 1.0, 1.0})
 
-       else
 
- 	 -- YUV 444
 
- 	 x:samplingFactors({1.0, 1.0, 1.0})
 
-       end
 
-       local blob, len = x:toBlob(quality[i])
 
-       x:fromBlob(blob, len)
 
-       x = x:toTensor("byte", "RGB", "DHW")
 
-    end
 
-    x = iproc.crop(x, unstable_region_offset, unstable_region_offset,
 
- 		  x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)
 
-    y = iproc.crop(y, unstable_region_offset, unstable_region_offset,
 
- 		  y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)
 
-    assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)
 
-    assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))
 
-    
 
-    local batch = {}
 
-    for i = 1, n do
 
-       local xc, yc = active_cropping(x, y, size,
 
- 				     options.active_cropping_rate,
 
- 				     options.active_cropping_tries)
 
-       xc = iproc.byte2float(xc)
 
-       yc = iproc.byte2float(yc)
 
-       if options.rgb then
 
-       else
 
- 	 yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
 
- 	 xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
 
-       end
 
-       if torch.uniform() < options.nr_rate then
 
- 	 -- reducing noise
 
- 	 table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
 
-       else
 
- 	 -- ratain useful details
 
- 	 table.insert(batch, {yc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
 
-       end
 
-    end
 
-    return batch
 
- end
 
- function pairwise_transform.jpeg(src, style, level, size, offset, n, options)
 
-    if style == "art" then
 
-       if level == 1 then
 
- 	 return pairwise_transform.jpeg_(src, {torch.random(65, 85)},
 
- 					 size, offset, n, options)
 
-       elseif level == 2 then
 
- 	 local r = torch.uniform()
 
- 	 if r > 0.6 then
 
- 	    return pairwise_transform.jpeg_(src, {torch.random(27, 70)},
 
- 					    size, offset, n, options)
 
- 	 elseif r > 0.3 then
 
- 	    local quality1 = torch.random(37, 70)
 
- 	    local quality2 = quality1 - torch.random(5, 10)
 
- 	    return pairwise_transform.jpeg_(src, {quality1, quality2},
 
- 					    size, offset, n, options)
 
- 	 else
 
- 	    local quality1 = torch.random(52, 70)
 
- 	    local quality2 = quality1 - torch.random(5, 15)
 
- 	    local quality3 = quality1 - torch.random(15, 25)
 
- 	    
 
- 	    return pairwise_transform.jpeg_(src, 
 
- 					    {quality1, quality2, quality3},
 
- 					    size, offset, n, options)
 
- 	 end
 
-       else
 
- 	 error("unknown noise level: " .. level)
 
-       end
 
-    elseif style == "photo" then
 
-       -- level adjusting by -nr_rate
 
-       return pairwise_transform.jpeg_(src, {torch.random(30, 70)},
 
- 				      size, offset, n,
 
- 				      options)
 
-    else
 
-       error("unknown style: " .. style)
 
-    end
 
- end
 
- function pairwise_transform.test_jpeg(src)
 
-    torch.setdefaulttensortype("torch.FloatTensor")
 
-    local options = {random_color_noise_rate = 0.5,
 
- 		    random_half_rate = 0.5,
 
- 		    random_overlay_rate = 0.5,
 
- 		    random_unsharp_mask_rate = 0.5,
 
- 		    jpeg_chroma_subsampling_rate = 0.5,
 
- 		    nr_rate = 1.0,
 
- 		    active_cropping_rate = 0.5,
 
- 		    active_cropping_tries = 10,
 
- 		    max_size = 256,
 
- 		    rgb = true
 
-    }
 
-    local image = require 'image'
 
-    local src = image.lena()
 
-    for i = 1, 9 do
 
-       local xy = pairwise_transform.jpeg(src,
 
- 					 "art",
 
- 					 torch.random(1, 2),
 
- 					 128, 7, 1, options)
 
-       image.display({image = xy[1][1], legend = "y:" .. (i * 10), min=0, max=1})
 
-       image.display({image = xy[1][2], legend = "x:" .. (i * 10), min=0, max=1})
 
-    end
 
- end
 
- function pairwise_transform.test_scale(src)
 
-    torch.setdefaulttensortype("torch.FloatTensor")
 
-    local options = {random_color_noise_rate = 0.5,
 
- 		    random_half_rate = 0.5,
 
- 		    random_overlay_rate = 0.5,
 
- 		    random_unsharp_mask_rate = 0.5,
 
- 		    active_cropping_rate = 0.5,
 
- 		    active_cropping_tries = 10,
 
- 		    max_size = 256,
 
- 		    rgb = true
 
-    }
 
-    local image = require 'image'
 
-    local src = image.lena()
 
-    for i = 1, 10 do
 
-       local xy = pairwise_transform.scale(src, 2.0, 128, 7, 1, options)
 
-       image.display({image = xy[1][1], legend = "y:" .. (i * 10), min = 0, max = 1})
 
-       image.display({image = xy[1][2], legend = "x:" .. (i * 10), min = 0, max = 1})
 
-    end
 
- end
 
- return pairwise_transform
 
 
  |