123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
- package.path = path.join(path.dirname(__FILE__), "..", "lib", "?.lua;") .. package.path
- require 'xlua'
- require 'pl'
- require 'w2nn'
- local iproc = require 'iproc'
- local reconstruct = require 'reconstruct'
- local image_loader = require 'image_loader'
- local gm = require 'graphicsmagick'
- local cmd = torch.CmdLine()
- cmd:text()
- cmd:text("waifu2x-benchmark")
- cmd:text("Options:")
- cmd:option("-seed", 11, 'fixed input seed')
- cmd:option("-dir", "./data/test", 'test image directory')
- cmd:option("-model1_dir", "./models/anime_style_art", 'model1 directory')
- cmd:option("-model2_dir", "./models/anime_style_art_rgb", 'model2 directory')
- cmd:option("-method", "scale", '(scale|noise)')
- cmd:option("-noise_level", 1, '(1|2)')
- cmd:option("-color_weight", "y", '(y|rgb)')
- cmd:option("-jpeg_quality", 75, 'jpeg quality')
- cmd:option("-jpeg_times", 1, 'jpeg compression times')
- cmd:option("-jpeg_quality_down", 5, 'value of jpeg quality to decrease each times')
- local opt = cmd:parse(arg)
- torch.setdefaulttensortype('torch.FloatTensor')
- if cudnn then
- cudnn.fastest = true
- cudnn.benchmark = false
- end
- local function MSE(x1, x2)
- return (x1 - x2):pow(2):mean()
- end
- local function YMSE(x1, x2)
- local x1_2 = image.rgb2y(x1)
- local x2_2 = image.rgb2y(x2)
- return (x1_2 - x2_2):pow(2):mean()
- end
- local function PSNR(x1, x2)
- local mse = MSE(x1, x2)
- return 20 * (math.log(1.0 / math.sqrt(mse)) / math.log(10))
- end
- local function YPSNR(x1, x2)
- local mse = YMSE(x1, x2)
- return 20 * (math.log(1.0 / math.sqrt(mse)) / math.log(10))
- end
- local function transform_jpeg(x)
- for i = 1, opt.jpeg_times do
- jpeg = gm.Image(x, "RGB", "DHW")
- jpeg:format("jpeg")
- jpeg:samplingFactors({1.0, 1.0, 1.0})
- blob, len = jpeg:toBlob(opt.jpeg_quality - (i - 1) * opt.jpeg_quality_down)
- jpeg:fromBlob(blob, len)
- x = jpeg:toTensor("byte", "RGB", "DHW")
- end
- return x
- end
- local function transform_scale(x)
- return iproc.scale(x,
- x:size(3) * 0.5,
- x:size(2) * 0.5,
- "Box")
- end
- local function benchmark(color_weight, x, input_func, v1_noise, v2_noise)
- local v1_mse = 0
- local v2_mse = 0
- local v1_psnr = 0
- local v2_psnr = 0
-
- for i = 1, #x do
- local ground_truth = x[i]
- local input, v1_output, v2_output
- input = input_func(ground_truth)
- input = input:float():div(255)
- ground_truth = ground_truth:float():div(255)
-
- t = sys.clock()
- if input:size(3) == ground_truth:size(3) then
- v1_output = reconstruct.image(v1_noise, input)
- v2_output = reconstruct.image(v2_noise, input)
- else
- v1_output = reconstruct.scale(v1_noise, 2.0, input)
- v2_output = reconstruct.scale(v2_noise, 2.0, input)
- end
- if color_weight == "y" then
- v1_mse = v1_mse + YMSE(ground_truth, v1_output)
- v1_psnr = v1_psnr + YPSNR(ground_truth, v1_output)
- v2_mse = v2_mse + YMSE(ground_truth, v2_output)
- v2_psnr = v2_psnr + YPSNR(ground_truth, v2_output)
- elseif color_weight == "rgb" then
- v1_mse = v1_mse + MSE(ground_truth, v1_output)
- v1_psnr = v1_psnr + PSNR(ground_truth, v1_output)
- v2_mse = v2_mse + MSE(ground_truth, v2_output)
- v2_psnr = v2_psnr + PSNR(ground_truth, v2_output)
- end
-
- io.stdout:write(
- string.format("%d/%d; v1_mse=%f, v2_mse=%f, v1_psnr=%f, v2_psnr=%f \r",
- i, #x,
- v1_mse / i, v2_mse / i,
- v1_psnr / i, v2_psnr / i
- )
- )
- io.stdout:flush()
- end
- io.stdout:write("\n")
- end
- local function load_data(test_dir)
- local test_x = {}
- local files = dir.getfiles(test_dir, "*.*")
- for i = 1, #files do
- table.insert(test_x, iproc.crop_mod4(image_loader.load_byte(files[i])))
- xlua.progress(i, #files)
- end
- return test_x
- end
- print(opt)
- torch.manualSeed(opt.seed)
- cutorch.manualSeed(opt.seed)
- if opt.method == "scale" then
- local v1 = torch.load(path.join(opt.model1_dir, "scale2.0x_model.t7"), "ascii")
- local v2 = torch.load(path.join(opt.model2_dir, "scale2.0x_model.t7"), "ascii")
- local test_x = load_data(opt.dir)
- benchmark(opt.color_weight, test_x, transform_scale, v1, v2)
- elseif opt.method == "noise" then
- local v1 = torch.load(path.join(opt.model1_dir, string.format("noise%d_model.t7", opt.noise_level)), "ascii")
- local v2 = torch.load(path.join(opt.model2_dir, string.format("noise%d_model.t7", opt.noise_level)), "ascii")
- local test_x = load_data(opt.dir)
- benchmark(opt.color_weight, test_x, transform_jpeg, v1, v2)
- end
|