reconstruct.lua 3.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091
  1. require 'image'
  2. local iproc = require './iproc'
  3. local function reconstruct_layer(model, x, block_size, offset)
  4. if x:dim() == 2 then
  5. x = x:reshape(1, x:size(1), x:size(2))
  6. end
  7. local new_x = torch.Tensor():resizeAs(x):zero()
  8. local output_size = block_size - offset * 2
  9. local input = torch.CudaTensor(1, 1, block_size, block_size)
  10. for i = 1, x:size(2), output_size do
  11. for j = 1, x:size(3), output_size do
  12. if i + block_size - 1 <= x:size(2) and j + block_size - 1 <= x:size(3) then
  13. local index = {{},
  14. {i, i + block_size - 1},
  15. {j, j + block_size - 1}}
  16. input:copy(x[index])
  17. local output = model:forward(input):float():view(1, output_size, output_size)
  18. local output_index = {{},
  19. {i + offset, offset + i + output_size - 1},
  20. {offset + j, offset + j + output_size - 1}}
  21. new_x[output_index]:copy(output)
  22. end
  23. end
  24. end
  25. return new_x
  26. end
  27. local reconstruct = {}
  28. function reconstruct.image(model, x, offset, block_size)
  29. block_size = block_size or 128
  30. local output_size = block_size - offset * 2
  31. local h_blocks = math.floor(x:size(2) / output_size) +
  32. ((x:size(2) % output_size == 0 and 0) or 1)
  33. local w_blocks = math.floor(x:size(3) / output_size) +
  34. ((x:size(3) % output_size == 0 and 0) or 1)
  35. local h = offset + h_blocks * output_size + offset
  36. local w = offset + w_blocks * output_size + offset
  37. local pad_h1 = offset
  38. local pad_w1 = offset
  39. local pad_h2 = (h - offset) - x:size(2)
  40. local pad_w2 = (w - offset) - x:size(3)
  41. local yuv = image.rgb2yuv(iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2))
  42. local y = reconstruct_layer(model, yuv[1], block_size, offset)
  43. y[torch.lt(y, 0)] = 0
  44. y[torch.gt(y, 1)] = 1
  45. yuv[1]:copy(y)
  46. local output = image.yuv2rgb(image.crop(yuv,
  47. pad_w1, pad_h1,
  48. yuv:size(3) - pad_w2, yuv:size(2) - pad_h2))
  49. output[torch.lt(output, 0)] = 0
  50. output[torch.gt(output, 1)] = 1
  51. collectgarbage()
  52. return output
  53. end
  54. function reconstruct.scale(model, scale, x, offset, block_size)
  55. block_size = block_size or 128
  56. local x_jinc = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Jinc")
  57. x = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Box")
  58. local output_size = block_size - offset * 2
  59. local h_blocks = math.floor(x:size(2) / output_size) +
  60. ((x:size(2) % output_size == 0 and 0) or 1)
  61. local w_blocks = math.floor(x:size(3) / output_size) +
  62. ((x:size(3) % output_size == 0 and 0) or 1)
  63. local h = offset + h_blocks * output_size + offset
  64. local w = offset + w_blocks * output_size + offset
  65. local pad_h1 = offset
  66. local pad_w1 = offset
  67. local pad_h2 = (h - offset) - x:size(2)
  68. local pad_w2 = (w - offset) - x:size(3)
  69. local yuv_nn = image.rgb2yuv(iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2))
  70. local yuv_jinc = image.rgb2yuv(iproc.padding(x_jinc, pad_w1, pad_w2, pad_h1, pad_h2))
  71. local y = reconstruct_layer(model, yuv_nn[1], block_size, offset)
  72. y[torch.lt(y, 0)] = 0
  73. y[torch.gt(y, 1)] = 1
  74. yuv_jinc[1]:copy(y)
  75. local output = image.yuv2rgb(image.crop(yuv_jinc,
  76. pad_w1, pad_h1,
  77. yuv_jinc:size(3) - pad_w2, yuv_jinc:size(2) - pad_h2))
  78. output[torch.lt(output, 0)] = 0
  79. output[torch.gt(output, 1)] = 1
  80. collectgarbage()
  81. return output
  82. end
  83. return reconstruct