| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294 | 
							- require 'pl'
 
- local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
 
- package.path = path.join(path.dirname(__FILE__), "..", "lib", "?.lua;") .. package.path
 
- require 'xlua'
 
- require 'w2nn'
 
- local iproc = require 'iproc'
 
- local reconstruct = require 'reconstruct'
 
- local image_loader = require 'image_loader'
 
- local gm = require 'graphicsmagick'
 
- local cjson = require 'cjson'
 
- local cmd = torch.CmdLine()
 
- cmd:text()
 
- cmd:text("waifu2x-benchmark")
 
- cmd:text("Options:")
 
- cmd:option("-dir", "./data/test", 'test image directory')
 
- cmd:option("-model1_dir", "./models/anime_style_art_rgb", 'model1 directory')
 
- cmd:option("-model2_dir", "", 'model2 directory (optional)')
 
- cmd:option("-method", "scale", '(scale|noise)')
 
- cmd:option("-filter", "Catrom", "downscaling filter (Box|Lanczos|Catrom(Bicubic))")
 
- cmd:option("-color", "y", '(rgb|y)')
 
- cmd:option("-noise_level", 1, 'model noise level')
 
- cmd:option("-jpeg_quality", 75, 'jpeg quality')
 
- cmd:option("-jpeg_times", 1, 'jpeg compression times')
 
- cmd:option("-jpeg_quality_down", 5, 'value of jpeg quality to decrease each times')
 
- cmd:option("-range_bug", 0, 'Reproducing the dynamic range bug that is caused by MATLAB\'s rgb2ycbcr(1|0)')
 
- cmd:option("-gamma_correction", 0, 'Resizing with colorspace correction(sRGB:gamma 2.2) (0|1)')
 
- cmd:option("-save_image", 0, 'save converted images')
 
- cmd:option("-save_baseline_image", 0, 'save baseline images')
 
- cmd:option("-output_dir", "./", 'output directroy')
 
- cmd:option("-show_progress", 1, 'show progressbar')
 
- cmd:option("-baseline_filter", "Catrom", 'baseline interpolation (Box|Lanczos|Catrom(Bicubic))')
 
- cmd:option("-save_info", 0, 'save score and parameters to benchmark.txt')
 
- cmd:option("-save_all", 0, 'group -save_info, -save_image and -save_baseline_image option')
 
- cmd:option("-thread", -1, 'number of CPU threads')
 
- local function to_bool(settings, name)
 
-    if settings[name] == 1 then
 
-       settings[name] = true
 
-    else
 
-       settings[name] = false
 
-    end
 
- end
 
- local opt = cmd:parse(arg)
 
- torch.setdefaulttensortype('torch.FloatTensor')
 
- if cudnn then
 
-    cudnn.fastest = true
 
-    cudnn.benchmark = false
 
- end
 
- to_bool(opt, "gamma_correction")
 
- to_bool(opt, "save_all")
 
- if opt.save_all then
 
-    opt.save_image = true
 
-    opt.save_info = true
 
-    opt.save_baseline_image = true
 
- else
 
-    to_bool(opt, "save_image")
 
-    to_bool(opt, "save_info")
 
-    to_bool(opt, "save_baseline_image")
 
- end
 
- to_bool(opt, "show_progress")
 
- if opt.thread > 0 then
 
-    torch.setnumthreads(tonumber(opt.thread))
 
- end
 
- local function rgb2y_matlab(x)
 
-    local y = torch.Tensor(1, x:size(2), x:size(3)):zero()
 
-    x = iproc.byte2float(x)
 
-    y:add(x[1] * 65.481)
 
-    y:add(x[2] * 128.553)
 
-    y:add(x[3] * 24.966)
 
-    y:add(16.0)
 
-    return y:byte():float()
 
- end
 
- local function RGBMSE(x1, x2)
 
-    x1 = iproc.float2byte(x1):float()
 
-    x2 = iproc.float2byte(x2):float()
 
-    return (x1 - x2):pow(2):mean()
 
- end
 
- local function YMSE(x1, x2)
 
-    if opt.range_bug == 1 then
 
-       local x1_2 = rgb2y_matlab(x1)
 
-       local x2_2 = rgb2y_matlab(x2)
 
-       return (x1_2 - x2_2):pow(2):mean()
 
-    else
 
-       local x1_2 = image.rgb2y(x1):mul(255.0)
 
-       local x2_2 = image.rgb2y(x2):mul(255.0)
 
-       return (x1_2 - x2_2):pow(2):mean()
 
-    end
 
- end
 
- local function MSE(x1, x2, color)
 
-    if color == "y" then
 
-       return YMSE(x1, x2)
 
-    else
 
-       return RGBMSE(x1, x2)
 
-    end
 
- end
 
- local function PSNR(x1, x2, color)
 
-    local mse = math.max(MSE(x1, x2, color), 1)
 
-    return 10 * math.log10((255.0 * 255.0) / mse)
 
- end
 
- local function transform_jpeg(x, opt)
 
-    for i = 1, opt.jpeg_times do
 
-       jpeg = gm.Image(x, "RGB", "DHW")
 
-       jpeg:format("jpeg")
 
-       jpeg:samplingFactors({1.0, 1.0, 1.0})
 
-       blob, len = jpeg:toBlob(opt.jpeg_quality - (i - 1) * opt.jpeg_quality_down)
 
-       jpeg:fromBlob(blob, len)
 
-       x = jpeg:toTensor("byte", "RGB", "DHW")
 
-    end
 
-    return iproc.byte2float(x)
 
- end
 
- local function baseline_scale(x, filter)
 
-    return iproc.scale(x,
 
- 		      x:size(3) * 2.0,
 
- 		      x:size(2) * 2.0,
 
- 		      filter)
 
- end
 
- local function transform_scale(x, opt)
 
-    if opt.gamma_correction then
 
-       return iproc.scale_with_gamma22(x,
 
- 			 x:size(3) * 0.5,
 
- 			 x:size(2) * 0.5,
 
- 			 opt.filter)
 
-    else
 
-       return iproc.scale(x,
 
- 			 x:size(3) * 0.5,
 
- 			 x:size(2) * 0.5,
 
- 			 opt.filter)
 
-    end
 
- end
 
- local function benchmark(opt, x, input_func, model1, model2)
 
-    local model1_mse = 0
 
-    local model2_mse = 0
 
-    local baseline_mse = 0
 
-    local model1_psnr = 0
 
-    local model2_psnr = 0
 
-    local baseline_psnr = 0
 
-    
 
-    for i = 1, #x do
 
-       local ground_truth = x[i].image
 
-       local basename = x[i].basename
 
-       
 
-       local input, model1_output, model2_output, baseline_output
 
-       input = input_func(ground_truth, opt)
 
-       t = sys.clock()
 
-       if input:size(3) == ground_truth:size(3) then
 
- 	 model1_output = reconstruct.image(model1, input)
 
- 	 if model2 then
 
- 	    model2_output = reconstruct.image(model2, input)
 
- 	 end
 
-       else
 
- 	 model1_output = reconstruct.scale(model1, 2.0, input)
 
- 	 if model2 then
 
- 	    model2_output = reconstruct.scale(model2, 2.0, input)
 
- 	 end
 
- 	 baseline_output = baseline_scale(input, opt.baseline_filter)
 
-       end
 
-       model1_mse = model1_mse + MSE(ground_truth, model1_output, opt.color)
 
-       model1_psnr = model1_psnr + PSNR(ground_truth, model1_output, opt.color)
 
-       if model2 then
 
- 	 model2_mse = model2_mse + MSE(ground_truth, model2_output, opt.color)
 
- 	 model2_psnr = model2_psnr + PSNR(ground_truth, model2_output, opt.color)
 
-       end
 
-       if baseline_output then
 
- 	 baseline_mse = baseline_mse + MSE(ground_truth, baseline_output, opt.color)
 
- 	 baseline_psnr = baseline_psnr + PSNR(ground_truth, baseline_output, opt.color)
 
-       end
 
-       if opt.save_image then
 
- 	 if opt.save_baseline_image and baseline_output then
 
- 	    image.save(path.join(opt.output_dir, string.format("%s_baseline.png", basename)),
 
- 		       baseline_output)
 
- 	 end
 
- 	 if model1_output then
 
- 	    image.save(path.join(opt.output_dir, string.format("%s_model1.png", basename)),
 
- 		       model1_output)
 
- 	 end
 
- 	 if model2_output then
 
- 	    image.save(path.join(opt.output_dir, string.format("%s_model2.png", basename)),
 
- 		       model2_output)
 
- 	 end
 
-       end
 
-       if opt.show_progress or i == #x then
 
- 	 if model2 then
 
- 	    if baseline_output then
 
- 	       io.stdout:write(
 
- 		  string.format("%d/%d; baseline_rmse=%f, model1_rmse=%f, model2_rmse=%f, baseline_psnr=%f, model1_psnr=%f, model2_psnr=%f \r",
 
- 				i, #x,
 
- 				math.sqrt(baseline_mse / i),
 
- 				math.sqrt(model1_mse / i), math.sqrt(model2_mse / i),
 
- 				baseline_psnr / i,
 
- 				model1_psnr / i, model2_psnr / i
 
- 		  ))
 
- 	    else
 
- 	       io.stdout:write(
 
- 		  string.format("%d/%d; model1_rmse=%f, model2_rmse=%f, model1_psnr=%f, model2_psnr=%f \r",
 
- 				i, #x,
 
- 				math.sqrt(model1_mse / i), math.sqrt(model2_mse / i),
 
- 				model1_psnr / i, model2_psnr / i
 
- 		  ))
 
- 	    end
 
- 	 else
 
- 	    if baseline_output then
 
- 	       io.stdout:write(
 
- 		  string.format("%d/%d; baseline_rmse=%f, model1_rmse=%f, baseline_psnr=%f, model1_psnr=%f \r",
 
- 				i, #x,
 
- 				math.sqrt(baseline_mse / i), math.sqrt(model1_mse / i),
 
- 				baseline_psnr / i, model1_psnr / i
 
- 		  ))
 
- 	    else
 
- 	       io.stdout:write(
 
- 		  string.format("%d/%d; model1_rmse=%f, model1_psnr=%f \r",
 
- 				i, #x,
 
- 				math.sqrt(model1_mse / i), model1_psnr / i
 
- 		  ))
 
- 	    end
 
- 	 end
 
- 	 io.stdout:flush()
 
-       end
 
-    end
 
-    if opt.save_info then
 
-       local fp = io.open(path.join(opt.output_dir, "benchmark.txt"), "w")
 
-       fp:write("options : " .. cjson.encode(opt) .. "\n")
 
-       if baseline_psnr > 0 then
 
- 	 fp:write(string.format("baseline: RMSE = %.3f, PSNR = %.3f\n",
 
- 				math.sqrt(baseline_mse / #x), baseline_psnr / #x))
 
-       end
 
-       if model1_psnr > 0 then
 
- 	 fp:write(string.format("model1  : RMSE = %.3f, PSNR = %.3f\n",
 
- 				math.sqrt(model1_mse / #x), model1_psnr / #x))
 
-       end
 
-       if model2_psnr > 0 then
 
- 	 fp:write(string.format("model2  : RMSE = %.3f, PSNR = %.3f\n",
 
- 				math.sqrt(model2_mse / #x), model2_psnr / #x))
 
-       end
 
-       fp:close()
 
-    end
 
-    io.stdout:write("\n")
 
- end
 
- local function load_data(test_dir)
 
-    local test_x = {}
 
-    local files = dir.getfiles(test_dir, "*.*")
 
-    for i = 1, #files do
 
-       local name = path.basename(files[i])
 
-       local e = path.extension(name)
 
-       local base = name:sub(0, name:len() - e:len())
 
-       local img = image_loader.load_float(files[i])
 
-       if img then
 
- 	 table.insert(test_x, {image = iproc.crop_mod4(img),
 
- 			       basename = base})
 
-       end
 
-       if opt.show_progress then
 
- 	 xlua.progress(i, #files)
 
-       end
 
-    end
 
-    return test_x
 
- end
 
- function load_model(filename)
 
-    return torch.load(filename, "ascii")
 
- end
 
- if opt.show_progress then
 
-    print(opt)
 
- end
 
- if opt.method == "scale" then
 
-    local f1 = path.join(opt.model1_dir, "scale2.0x_model.t7")
 
-    local f2 = path.join(opt.model2_dir, "scale2.0x_model.t7")
 
-    local s1, model1 = pcall(load_model, f1)
 
-    local s2, model2 = pcall(load_model, f2)
 
-    if not s1 then
 
-       error("Load error: " .. f1)
 
-    end
 
-    if not s2 then
 
-       model2 = nil
 
-    end
 
-    local test_x = load_data(opt.dir)
 
-    benchmark(opt, test_x, transform_scale, model1, model2)
 
- elseif opt.method == "noise" then
 
-    local f1 = path.join(opt.model1_dir, string.format("noise%d_model.t7", opt.noise_level))
 
-    local f2 = path.join(opt.model2_dir, string.format("noise%d_model.t7", opt.noise_level))
 
-    local s1, model1 = pcall(load_model, f1)
 
-    local s2, model2 = pcall(load_model, f2)
 
-    if not s1 then
 
-       error("Load error: " .. f1)
 
-    end
 
-    if not s2 then
 
-       model2 = nil
 
-    end
 
-    local test_x = load_data(opt.dir)
 
-    benchmark(opt, test_x, transform_jpeg, model1, model2)
 
- end
 
 
  |