123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 |
- -- RandomBinaryConvolution.lua
- -- from https://github.com/juefeix/lbcnn.torch
- --[[
- MIT License
- Copyright (c) 2017 Felix Juefei Xu
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in all
- copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- SOFTWARE.
- --]]
- local THNN = require 'nn.THNN'
- local RandomBinaryConvolution, parent = torch.class('w2nn.RandomBinaryConvolution', 'nn.SpatialConvolution')
- function RandomBinaryConvolution:__init(nInputPlane, nOutputPlane, kW, kH, kSparsity)
- self.kSparsity = kSparsity or 0.9
- parent.__init(self, nInputPlane, nOutputPlane, kW, kH, 1, 1, 0, 0)
- self:reset()
- end
- function RandomBinaryConvolution:reset()
- local numElements = self.nInputPlane*self.nOutputPlane*self.kW*self.kH
- self.weight:fill(0)
- self.weight = torch.reshape(self.weight,numElements)
- local index = torch.Tensor(torch.floor(self.kSparsity*numElements)):random(numElements)
- for i = 1, index:numel() do
- self.weight[index[i]] = torch.bernoulli(0.5)*2-1
- end
- self.weight = torch.reshape(self.weight,self.nOutputPlane,self.nInputPlane,self.kW,self.kH)
- self.bias = nil
- self.gradBias = nil
- self.gradWeight:fill(0)
- end
- function RandomBinaryConvolution:accGradParameters(input, gradOutput, scale)
- end
- function RandomBinaryConvolution:updateParameters(learningRate)
- end
|