| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 | require 'image'local iproc = require './iproc'local function reconstruct_layer(model, x, block_size, offset)   if x:dim() == 2 then      x = x:reshape(1, x:size(1), x:size(2))   end   local new_x = torch.Tensor():resizeAs(x):zero()   local output_size = block_size - offset * 2   local input = torch.CudaTensor(1, 1, block_size, block_size)      for i = 1, x:size(2), output_size do      for j = 1, x:size(3), output_size do	 if i + block_size - 1 <= x:size(2) and j + block_size - 1 <= x:size(3) then	    local index = {{},			   {i, i + block_size - 1},			   {j, j + block_size - 1}}	    input:copy(x[index])	    local output = model:forward(input):float():view(1, output_size, output_size)	    local output_index = {{},				  {i + offset, offset + i + output_size - 1},				  {offset + j, offset + j + output_size - 1}}	    new_x[output_index]:copy(output)	 end      end   end   return new_xendlocal reconstruct = {}function reconstruct.image(model, x, offset, block_size)   block_size = block_size or 128   local output_size = block_size - offset * 2   local h_blocks = math.floor(x:size(2) / output_size) +      ((x:size(2) % output_size == 0 and 0) or 1)   local w_blocks = math.floor(x:size(3) / output_size) +      ((x:size(3) % output_size == 0 and 0) or 1)      local h = offset + h_blocks * output_size + offset   local w = offset + w_blocks * output_size + offset   local pad_h1 = offset   local pad_w1 = offset   local pad_h2 = (h - offset) - x:size(2)   local pad_w2 = (w - offset) - x:size(3)   local yuv = image.rgb2yuv(iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2))   local y = reconstruct_layer(model, yuv[1], block_size, offset)   y[torch.lt(y, 0)] = 0   y[torch.gt(y, 1)] = 1   yuv[1]:copy(y)   local output = image.yuv2rgb(image.crop(yuv,					   pad_w1, pad_h1,					   yuv:size(3) - pad_w2, yuv:size(2) - pad_h2))   output[torch.lt(output, 0)] = 0   output[torch.gt(output, 1)] = 1   collectgarbage()      return outputendfunction reconstruct.scale(model, scale, x, offset, block_size)   block_size = block_size or 128   local x_jinc = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Jinc")   x = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Box")   local output_size = block_size - offset * 2   local h_blocks = math.floor(x:size(2) / output_size) +      ((x:size(2) % output_size == 0 and 0) or 1)   local w_blocks = math.floor(x:size(3) / output_size) +      ((x:size(3) % output_size == 0 and 0) or 1)      local h = offset + h_blocks * output_size + offset   local w = offset + w_blocks * output_size + offset   local pad_h1 = offset   local pad_w1 = offset   local pad_h2 = (h - offset) - x:size(2)   local pad_w2 = (w - offset) - x:size(3)   local yuv_nn = image.rgb2yuv(iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2))   local yuv_jinc = image.rgb2yuv(iproc.padding(x_jinc, pad_w1, pad_w2, pad_h1, pad_h2))   local y = reconstruct_layer(model, yuv_nn[1], block_size, offset)   y[torch.lt(y, 0)] = 0   y[torch.gt(y, 1)] = 1   yuv_jinc[1]:copy(y)   local output = image.yuv2rgb(image.crop(yuv_jinc,					   pad_w1, pad_h1,					   yuv_jinc:size(3) - pad_w2, yuv_jinc:size(2) - pad_h2))   output[torch.lt(output, 0)] = 0   output[torch.gt(output, 1)] = 1   collectgarbage()      return outputendreturn reconstruct
 |