| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 | require 'image'local gm = require 'graphicsmagick'local iproc = require './iproc'local reconstruct = require './reconstruct'local pairwise_transform = {}function pairwise_transform.scale(src, scale, size, offset, options)   options = options or {}   local yi = torch.random(0, src:size(2) - size - 1)   local xi = torch.random(0, src:size(3) - size - 1)   local down_scale = 1.0 / scale   local y = image.crop(src, xi, yi, xi + size, yi + size)   local flip = torch.random(1, 4)   local nega = torch.random(0, 1)   local filters = {      "Box",        -- 0.012756949974688      "Blackman",   -- 0.013191924552285      --"Cartom",     -- 0.013753536746706      --"Hanning",    -- 0.013761314529647      --"Hermite",    -- 0.013850225205266      --"SincFast",   -- 0.014095824314306      --"Jinc",       -- 0.014244299255442   }   local downscale_filter = filters[torch.random(1, #filters)]      if flip == 1 then      y = image.hflip(y)   elseif flip == 2 then      y = image.vflip(y)   elseif flip == 3 then      y = image.hflip(image.vflip(y))   elseif flip == 4 then      -- none   end   if options.color_augment then      y = y:float():div(255)      local color_scale = torch.Tensor(3):uniform(0.8, 1.2)      for i = 1, 3 do	 y[i]:mul(color_scale[i])      end      y[torch.lt(y, 0)] = 0      y[torch.gt(y, 1.0)] = 1.0      y = y:mul(255):byte()   end   local x = iproc.scale(y, y:size(3) * down_scale, y:size(2) * down_scale, downscale_filter)   if options.noise and (options.noise_ratio or 0.5) > torch.uniform() then      -- add noise      local quality = {torch.random(70, 90)}      for i = 1, #quality do	 x = gm.Image(x, "RGB", "DHW")	 x:format("jpeg")	 local blob, len = x:toBlob(quality[i])	 x:fromBlob(blob, len)	    x = x:toTensor("byte", "RGB", "DHW")      end   end   if options.denoise_model and (options.denoise_ratio or 0.5) > torch.uniform() then      x = reconstruct(options.denoise_model, x:float():div(255), offset):mul(255):byte()   end   x = iproc.scale(x, y:size(3), y:size(2))   y = y:float():div(255)   x = x:float():div(255)   y = image.rgb2yuv(y)[1]:reshape(1, y:size(2), y:size(3))   x = image.rgb2yuv(x)[1]:reshape(1, x:size(2), x:size(3))      return x, image.crop(y, offset, offset, size - offset, size - offset)endfunction pairwise_transform.jpeg_(src, quality, size, offset, color_augment)   if color_augment == nil then color_augment = true end   local yi = torch.random(0, src:size(2) - size - 1)   local xi = torch.random(0, src:size(3) - size - 1)   local y = src   local x   local flip = torch.random(1, 4)   if color_augment then      local color_scale = torch.Tensor(3):uniform(0.8, 1.2)      y = y:float():div(255)      for i = 1, 3 do	 y[i]:mul(color_scale[i])      end      y[torch.lt(y, 0)] = 0      y[torch.gt(y, 1.0)] = 1.0      y = y:mul(255):byte()   end   x = y   for i = 1, #quality do      x = gm.Image(x, "RGB", "DHW")      x:format("jpeg")      local blob, len = x:toBlob(quality[i])      x:fromBlob(blob, len)      x = x:toTensor("byte", "RGB", "DHW")   end      y = image.crop(y, xi, yi, xi + size, yi + size)   x = image.crop(x, xi, yi, xi + size, yi + size)   x = x:float():div(255)   y = y:float():div(255)      if flip == 1 then      y = image.hflip(y)      x = image.hflip(x)   elseif flip == 2 then      y = image.vflip(y)      x = image.vflip(x)   elseif flip == 3 then      y = image.hflip(image.vflip(y))      x = image.hflip(image.vflip(x))   elseif flip == 4 then      -- none   end   y = image.rgb2yuv(y)[1]:reshape(1, y:size(2), y:size(3))   x = image.rgb2yuv(x)[1]:reshape(1, x:size(2), x:size(3))   return x, image.crop(y, offset, offset, size - offset, size - offset)endfunction pairwise_transform.jpeg(src, level, size, offset, color_augment)   if level == 1 then      return pairwise_transform.jpeg_(src, {torch.random(65, 85)},				      size, offset,				      color_augment)   elseif level == 2 then      local r = torch.uniform()      if r > 0.6 then	 return pairwise_transform.jpeg_(src, {torch.random(27, 80)},					 size, offset,					 color_augment)      elseif r > 0.3 then	 local quality1 = torch.random(32, 40)	 local quality2 = quality1 - 5	 return pairwise_transform.jpeg_(src, {quality1, quality2},					 size, offset,					 color_augment)      else	 local quality1 = torch.random(47, 70)	 return pairwise_transform.jpeg_(src, {quality1, quality1 - 10, quality1 - 20},					 size, offset,					 color_augment)      end   else      error("unknown noise level: " .. level)   endendlocal function test_jpeg()   local loader = require 'image_loader'   local src = loader.load_byte("a.jpg")   for i = 2, 9 do      local y, x = pairwise_transform.jpeg_(src, {i * 10}, 128, 0, false)      image.display({image = y, legend = "y:" .. (i * 10), max=1,min=0})      image.display({image = x, legend = "x:" .. (i * 10),max=1,min=0})      --print(x:mean(), y:mean())   endendlocal function test_scale()   require 'nn'   require 'cudnn'   require './LeakyReLU'      local loader = require 'image_loader'   local src = loader.load_byte("e.jpg")   for i = 1, 9 do      local y, x = pairwise_transform.scale(src, 2.0, "Box", 128, 7, {noise = true, denoise_model = torch.load("models/noise1_model.t7")})      image.display({image = y, legend = "y:" .. (i * 10)})      image.display({image = x, legend = "x:" .. (i * 10)})      --print(x:mean(), y:mean())   endend--test_jpeg()--test_scale()return pairwise_transform
 |