| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 | require './LeakyReLU'function nn.SpatialConvolutionMM:reset(stdv)   stdv = math.sqrt(2 / ( self.kW * self.kH * self.nOutputPlane))   self.weight:normal(0, stdv)   self.bias:fill(0)endlocal srcnn = {}function srcnn.waifu2x()   local model = nn.Sequential()      model:add(nn.SpatialConvolutionMM(1, 32, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1))   model:add(nn.SpatialConvolutionMM(32, 32, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1))   model:add(nn.SpatialConvolutionMM(32, 64, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1))   model:add(nn.SpatialConvolutionMM(64, 64, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1))   model:add(nn.SpatialConvolutionMM(64, 128, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1))   model:add(nn.SpatialConvolutionMM(128, 128, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1))   model:add(nn.SpatialConvolutionMM(128, 1, 3, 3, 1, 1, 0, 0))   model:add(nn.View(-1):setNumInputDims(3))--model:cuda()--print(model:forward(torch.Tensor(32, 1, 92, 92):uniform():cuda()):size())      return model, 7end-- current 4x is worse then 2x * 2function srcnn.waifu4x()   local model = nn.Sequential()      model:add(nn.SpatialConvolutionMM(1, 32, 9, 9, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1))   model:add(nn.SpatialConvolutionMM(32, 32, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1))   model:add(nn.SpatialConvolutionMM(32, 64, 5, 5, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1))   model:add(nn.SpatialConvolutionMM(64, 64, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1))   model:add(nn.SpatialConvolutionMM(64, 128, 5, 5, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1))   model:add(nn.SpatialConvolutionMM(128, 128, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1))   model:add(nn.SpatialConvolutionMM(128, 1, 5, 5, 1, 1, 0, 0))   model:add(nn.View(-1):setNumInputDims(3))      return model, 13endreturn srcnn
 |