require './LeakyReLU' function nn.SpatialConvolutionMM:reset(stdv) stdv = math.sqrt(2 / ( self.kW * self.kH * self.nOutputPlane)) self.weight:normal(0, stdv) self.bias:fill(0) end local srcnn = {} function srcnn.waifu2x() local model = nn.Sequential() model:add(nn.SpatialConvolutionMM(1, 32, 3, 3, 1, 1, 0, 0)) model:add(nn.LeakyReLU(0.1)) model:add(nn.SpatialConvolutionMM(32, 32, 3, 3, 1, 1, 0, 0)) model:add(nn.LeakyReLU(0.1)) model:add(nn.SpatialConvolutionMM(32, 64, 3, 3, 1, 1, 0, 0)) model:add(nn.LeakyReLU(0.1)) model:add(nn.SpatialConvolutionMM(64, 64, 3, 3, 1, 1, 0, 0)) model:add(nn.LeakyReLU(0.1)) model:add(nn.SpatialConvolutionMM(64, 128, 3, 3, 1, 1, 0, 0)) model:add(nn.LeakyReLU(0.1)) model:add(nn.SpatialConvolutionMM(128, 128, 3, 3, 1, 1, 0, 0)) model:add(nn.LeakyReLU(0.1)) model:add(nn.SpatialConvolutionMM(128, 1, 3, 3, 1, 1, 0, 0)) model:add(nn.View(-1):setNumInputDims(3)) --model:cuda() --print(model:forward(torch.Tensor(32, 1, 92, 92):uniform():cuda()):size()) return model, 7 end -- current 4x is worse then 2x * 2 function srcnn.waifu4x() local model = nn.Sequential() model:add(nn.SpatialConvolutionMM(1, 32, 9, 9, 1, 1, 0, 0)) model:add(nn.LeakyReLU(0.1)) model:add(nn.SpatialConvolutionMM(32, 32, 3, 3, 1, 1, 0, 0)) model:add(nn.LeakyReLU(0.1)) model:add(nn.SpatialConvolutionMM(32, 64, 5, 5, 1, 1, 0, 0)) model:add(nn.LeakyReLU(0.1)) model:add(nn.SpatialConvolutionMM(64, 64, 3, 3, 1, 1, 0, 0)) model:add(nn.LeakyReLU(0.1)) model:add(nn.SpatialConvolutionMM(64, 128, 5, 5, 1, 1, 0, 0)) model:add(nn.LeakyReLU(0.1)) model:add(nn.SpatialConvolutionMM(128, 128, 3, 3, 1, 1, 0, 0)) model:add(nn.LeakyReLU(0.1)) model:add(nn.SpatialConvolutionMM(128, 1, 5, 5, 1, 1, 0, 0)) model:add(nn.View(-1):setNumInputDims(3)) return model, 13 end return srcnn