local pairwise_utils = require 'pairwise_transform_utils' local iproc = require 'iproc' local gm = require 'graphicsmagick' local pairwise_transform = {} function pairwise_transform.scale(src, scale, size, offset, n, options) local filters = options.downsampling_filters if options.data.filters then filters = options.data.filters end local unstable_region_offset = 8 local downsampling_filter = filters[torch.random(1, #filters)] local blur = torch.uniform(options.resize_blur_min, options.resize_blur_max) local y = pairwise_utils.preprocess(src, size, options) assert(y:size(2) % 4 == 0 and y:size(3) % 4 == 0) local down_scale = 1.0 / scale local x local small = iproc.scale(y, y:size(3) * down_scale, y:size(2) * down_scale, downsampling_filter, blur) if options.x_upsampling then x = iproc.scale(small, y:size(3), y:size(2), "Box") else x = small end local scale_inner = scale if options.x_upsampling then scale_inner = 1 end x = iproc.crop(x, unstable_region_offset, unstable_region_offset, x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset) y = iproc.crop(y, unstable_region_offset * scale_inner, unstable_region_offset * scale_inner, y:size(3) - unstable_region_offset * scale_inner, y:size(2) - unstable_region_offset * scale_inner) if options.x_upsampling then assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0) assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3)) else assert(x:size(1) == y:size(1) and x:size(2) * scale == y:size(2) and x:size(3) * scale == y:size(3)) end local batch = {} local lowres_y = gm.Image(y, "RGB", "DHW"): size(y:size(3) * 0.5, y:size(2) * 0.5, "Box"): size(y:size(3), y:size(2), "Box"): toTensor(t, "RGB", "DHW") local xs = {} local ys = {} local lowreses = {} for j = 1, 2 do -- TTA local xi, yi, ri if j == 1 then xi = x yi = y ri = lowres_y else xi = x:transpose(2, 3):contiguous() yi = y:transpose(2, 3):contiguous() ri = lowres_y:transpose(2, 3):contiguous() end local xv = image.vflip(xi) local yv = image.vflip(yi) local rv = image.vflip(ri) table.insert(xs, xi) table.insert(ys, yi) table.insert(lowreses, ri) table.insert(xs, xv) table.insert(ys, yv) table.insert(lowreses, rv) table.insert(xs, image.hflip(xi)) table.insert(ys, image.hflip(yi)) table.insert(lowreses, image.hflip(ri)) table.insert(xs, image.hflip(xv)) table.insert(ys, image.hflip(yv)) table.insert(lowreses, image.hflip(rv)) end for i = 1, n do local t = (i % #xs) + 1 local xc, yc = pairwise_utils.active_cropping(xs[t], ys[t], lowreses[t], size, scale_inner, options.active_cropping_rate, options.active_cropping_tries) xc = iproc.byte2float(xc) yc = iproc.byte2float(yc) if options.rgb then else yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3)) xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3)) end table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)}) end return batch end function pairwise_transform.test_scale(src) torch.setdefaulttensortype("torch.FloatTensor") local options = {random_color_noise_rate = 0.5, random_half_rate = 0.5, random_overlay_rate = 0.5, random_unsharp_mask_rate = 0.5, active_cropping_rate = 0.5, active_cropping_tries = 10, max_size = 256, x_upsampling = false, downsampling_filters = "Box", rgb = true } local image = require 'image' local src = image.lena() for i = 1, 10 do local xy = pairwise_transform.scale(src, 2.0, 128, 7, 1, options) image.display({image = xy[1][1], legend = "y:" .. (i * 10), min = 0, max = 1}) image.display({image = xy[1][2], legend = "x:" .. (i * 10), min = 0, max = 1}) end end return pairwise_transform