require 'pl' require 'cunn' local iproc = require 'iproc' local gm = {} gm.Image = require 'graphicsmagick.Image' local data_augmentation = {} local function pcacov(x) local mean = torch.mean(x, 1) local xm = x - torch.ger(torch.ones(x:size(1)), mean:squeeze()) local c = torch.mm(xm:t(), xm) c:div(x:size(1) - 1) local ce, cv = torch.symeig(c, 'V') return ce, cv end function data_augmentation.color_noise(src, p, factor) factor = factor or 0.1 if torch.uniform() < p then local src, conversion = iproc.byte2float(src) local src_t = src:reshape(src:size(1), src:nElement() / src:size(1)):t():contiguous() local ce, cv = pcacov(src_t) local color_scale = torch.Tensor(3):uniform(1 / (1 + factor), 1 + factor) pca_space = torch.mm(src_t, cv):t():contiguous() for i = 1, 3 do pca_space[i]:mul(color_scale[i]) end local dest = torch.mm(pca_space:t(), cv:t()):t():contiguous():resizeAs(src) dest[torch.lt(dest, 0.0)] = 0.0 dest[torch.gt(dest, 1.0)] = 1.0 if conversion then dest = iproc.float2byte(dest) end return dest else return src end end function data_augmentation.overlay(src, p) if torch.uniform() < p then local r = torch.uniform() local src, conversion = iproc.byte2float(src) src = src:contiguous() local flip = data_augmentation.flip(src) flip:mul(r):add(src * (1.0 - r)) if conversion then flip = iproc.float2byte(flip) end return flip else return src end end function data_augmentation.unsharp_mask(src, p) if torch.uniform() < p then local radius = 0 -- auto local sigma = torch.uniform(0.5, 1.5) local amount = torch.uniform(0.1, 0.9) local threshold = torch.uniform(0.0, 0.05) local unsharp = gm.Image(src, "RGB", "DHW"): unsharpMask(radius, sigma, amount, threshold): toTensor("float", "RGB", "DHW") if src:type() == "torch.ByteTensor" then return iproc.float2byte(unsharp) else return unsharp end else return src end end data_augmentation.blur_conv = {} function data_augmentation.blur(src, p, size, sigma_min, sigma_max) size = size or "3" filters = utils.split(size, ",") for i = 1, #filters do local s = tonumber(filters[i]) filters[i] = s if not data_augmentation.blur_conv[s] then data_augmentation.blur_conv[s] = nn.SpatialConvolutionMM(1, 1, s, s, 1, 1, (s - 1) / 2, (s - 1) / 2):noBias():cuda() end end if torch.uniform() < p then local src, conversion = iproc.byte2float(src) local kernel_size = filters[torch.random(1, #filters)] local sigma if sigma_min == sigma_max then sigma = sigma_min else sigma = torch.uniform(sigma_min, sigma_max) end local kernel = iproc.gaussian2d(kernel_size, sigma) data_augmentation.blur_conv[kernel_size].weight:copy(kernel) local dest = torch.Tensor(3, src:size(2), src:size(3)) dest[1]:copy(data_augmentation.blur_conv[kernel_size]:forward(src[1]:reshape(1, src:size(2), src:size(3)):cuda())) dest[2]:copy(data_augmentation.blur_conv[kernel_size]:forward(src[2]:reshape(1, src:size(2), src:size(3)):cuda())) dest[3]:copy(data_augmentation.blur_conv[kernel_size]:forward(src[3]:reshape(1, src:size(2), src:size(3)):cuda())) if conversion then dest = iproc.float2byte(dest) end return dest else return src end end function data_augmentation.shift_1px(src) -- reducing the even/odd issue in nearest neighbor scaler. local direction = torch.random(1, 4) local x_shift = 0 local y_shift = 0 if direction == 1 then x_shift = 1 y_shift = 0 elseif direction == 2 then x_shift = 0 y_shift = 1 elseif direction == 3 then x_shift = 1 y_shift = 1 elseif flip == 4 then x_shift = 0 y_shift = 0 end local w = src:size(3) - x_shift local h = src:size(2) - y_shift w = w - (w % 4) h = h - (h % 4) local dest = iproc.crop(src, x_shift, y_shift, x_shift + w, y_shift + h) return dest end function data_augmentation.flip(src) local flip = torch.random(1, 4) local tr = torch.random(1, 2) local src, conversion = iproc.byte2float(src) local dest src = src:contiguous() if tr == 1 then -- pass elseif tr == 2 then src = src:transpose(2, 3):contiguous() end if flip == 1 then dest = iproc.hflip(src) elseif flip == 2 then dest = iproc.vflip(src) elseif flip == 3 then dest = iproc.hflip(iproc.vflip(src)) elseif flip == 4 then dest = src end if conversion then dest = iproc.float2byte(dest) end return dest end local function test_blur() torch.setdefaulttensortype("torch.FloatTensor") local image =require 'image' local src = image.lena() image.display({image = src, min=0, max=1}) local dest = data_augmentation.blur(src, 1.0, "3,5", 0.5, 0.6) image.display({image = dest, min=0, max=1}) dest = data_augmentation.blur(src, 1.0, "3", 1.0, 1.0) image.display({image = dest, min=0, max=1}) dest = data_augmentation.blur(src, 1.0, "5", 0.75, 0.75) image.display({image = dest, min=0, max=1}) end --test_blur() return data_augmentation