|
@@ -0,0 +1,34 @@
|
|
|
+local ScaleTable, parent = torch.class("w2nn.ScaleTable", "nn.Module")
|
|
|
+
|
|
|
+function ScaleTable:__init()
|
|
|
+ parent.__init(self)
|
|
|
+ self.gradInput = {}
|
|
|
+ self.grad_tmp = torch.Tensor()
|
|
|
+ self.scale = torch.Tensor()
|
|
|
+end
|
|
|
+function ScaleTable:updateOutput(input)
|
|
|
+ assert(#input == 2)
|
|
|
+ assert(input[1]:size(2) == input[2]:size(2))
|
|
|
+
|
|
|
+ self.scale:resizeAs(input[1]):expandAs(input[2], input[1])
|
|
|
+ self.output:resizeAs(self.scale):copy(self.scale)
|
|
|
+ self.output:cmul(input[1])
|
|
|
+ return self.output
|
|
|
+end
|
|
|
+
|
|
|
+function ScaleTable:updateGradInput(input, gradOutput)
|
|
|
+ self.gradInput[1] = self.gradInput[1] or input[1].new()
|
|
|
+ self.gradInput[1]:resizeAs(input[1]):copy(gradOutput)
|
|
|
+ self.gradInput[1]:cmul(self.scale)
|
|
|
+
|
|
|
+ self.grad_tmp:resizeAs(input[1]):copy(gradOutput)
|
|
|
+ self.grad_tmp:cmul(input[1])
|
|
|
+ self.gradInput[2] = self.gradInput[2] or input[2].new()
|
|
|
+ self.gradInput[2]:resizeAs(input[2]):sum(self.grad_tmp:reshape(self.grad_tmp:size(1), self.grad_tmp:size(2), self.grad_tmp:size(3) * self.grad_tmp:size(4)), 3):resizeAs(input[2])
|
|
|
+
|
|
|
+ for i=#input+1, #self.gradInput do
|
|
|
+ self.gradInput[i] = nil
|
|
|
+ end
|
|
|
+
|
|
|
+ return self.gradInput
|
|
|
+end
|