Explorar el Código

Add support for user specified pairwise data for universal filter

nagadomi hace 9 años
padre
commit
edac608f18
Se han modificado 6 ficheros con 204 adiciones y 27 borrados
  1. 1 0
      README.md
  2. 72 23
      convert_data.lua
  3. 1 0
      lib/pairwise_transform.lua
  4. 60 0
      lib/pairwise_transform_user.lua
  5. 38 3
      train.lua
  6. 32 1
      waifu2x.lua

+ 1 - 0
README.md

@@ -91,6 +91,7 @@ luarocks install graphicsmagick # upgrade
 luarocks install lua-csnappy
 luarocks install md5
 luarocks install uuid
+luarocks install csvigo
 PREFIX=$HOME/torch/install luarocks install turbo # if you need to use web application
 ```
 

+ 72 - 23
convert_data.lua

@@ -3,6 +3,8 @@ local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^
 package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path
 
 require 'image'
+local cjson = require 'cjson'
+local csvigo = require 'csvigo'
 local compression = require 'compression'
 local settings = require 'settings'
 local image_loader = require 'image_loader'
@@ -10,6 +12,9 @@ local iproc = require 'iproc'
 local alpha_util = require 'alpha_util'
 
 local function crop_if_large(src, max_size)
+   if max_size < 0 then
+      return src
+   end
    local tries = 4
    if src:size(2) >= max_size and src:size(3) >= max_size then
       local rect
@@ -27,25 +32,59 @@ local function crop_if_large(src, max_size)
       return src
    end
 end
+local function crop_if_large_pair(x, y, max_size)
+   if max_size < 0 then
+      return x, y
+   end
+   local scale_y = y:size(2) / x:size(2)
+   local mod = 4
+   assert(x:size(3) == (y:size(3) / scale_y))
+
+   local tries = 4
+   if y:size(2) > max_size and y:size(3) > max_size then
+      assert(max_size % 4 == 0)
+      local rect_x, rect_y
+      for i = 1, tries do
+	 local yi = torch.random(0, y:size(2) - max_size)
+	 local xi = torch.random(0, y:size(3) - max_size)
+	 if mod then
+	    yi = yi - (yi % mod)
+	    xi = xi - (xi % mod)
+	 end
+	 rect_y = iproc.crop(y, xi, yi, xi + max_size, yi + max_size)
+	 rect_x = iproc.crop(y, xi / scale_y, yi / scale_y, xi / scale_y + max_size / scale_y, yi / scale_y + max_size / scale_y)
+	 -- ignore simple background
+	 if rect_y:float():std() >= 0 then
+	    break
+	 end
+      end
+      return rect_x, rect_y
+   else
+      return x, y
+   end
+end
 
 local function load_images(list)
    local MARGIN = 32
-   local lines = utils.split(file.read(list), "\n")
+   local csv = csvigo.load({path = list, verbose = false, mode = "raw"})
    local x = {}
    local skip_notice = false
-   for i = 1, #lines do
-      local line = lines[i]
-      local v = utils.split(line, ",")
-      local filename = v[1]
-      local filters = v[2]
-      if filters then
-	 filters = utils.split(filters, ":")
+   for i = 1, #csv do
+      local filename = csv[i][1]
+      local csv_meta = csv[i][2]
+      if csv_meta and csv_meta:len() > 0 then
+	 csv_meta = cjson.decode(csv_meta)
+      end
+      if csv_meta.filters then
+	 filters = csv_meta.filters
       end
       local im, meta = image_loader.load_byte(filename)
       local skip = false
+      local alpha_color = torch.random(0, 1)
+
       if meta and meta.alpha then
 	 if settings.use_transparent_png then
-	    im = alpha_util.fill(im, meta.alpha, torch.random(0, 1))
+	    im = alpha_util.fill(im, meta.alpha, alpha_color)
 	 else
 	    skip = true
 	 end
@@ -56,25 +95,35 @@ local function load_images(list)
 	    skip_notice = true
 	 end
       else
-	 if settings.max_training_image_size > 0 then
+	 if csv_meta.x then
+	    -- method == user
+	    local yy = im
+	    local xx, meta2 = image_loader.load_byte(csv_meta.x)
+	    if meta2 and meta2.alpha then
+	       xx = alpha_util.fill(xx, meta2.alpha, alpha_color)
+	    end
+	    xx, yy = crop_if_large_pair(xx, yy, settings.max_training_image_size)
+	    table.insert(x, {{y = compression.compress(yy), x = compression.compress(xx)},
+			    {data = {filters = filters, has_x = true}}})
+	 else
 	    im = crop_if_large(im, settings.max_training_image_size)
-	 end
-	 im = iproc.crop_mod4(im)
-	 local scale = 1.0
-	 if settings.random_half_rate > 0.0 then
-	    scale = 2.0
-	 end
-	 if im then
-	    if im:size(2) > (settings.crop_size * scale + MARGIN) and im:size(3) > (settings.crop_size * scale + MARGIN) then
-	       table.insert(x, {compression.compress(im), {data = {filters = filters}}})
+	    im = iproc.crop_mod4(im)
+	    local scale = 1.0
+	    if settings.random_half_rate > 0.0 then
+	       scale = 2.0
+	    end
+	    if im then
+	       if im:size(2) > (settings.crop_size * scale + MARGIN) and im:size(3) > (settings.crop_size * scale + MARGIN) then
+		  table.insert(x, {compression.compress(im), {data = {filters = filters}}})
+	       else
+		  io.stderr:write(string.format("\n%s: skip: image is too small (%d > size).\n", filename, settings.crop_size * scale + MARGIN))
+	       end
 	    else
-	       io.stderr:write(string.format("\n%s: skip: image is too small (%d > size).\n", filename, settings.crop_size * scale + MARGIN))
+	       io.stderr:write(string.format("\n%s: skip: load error.\n", filename))
 	    end
-	 else
-	    io.stderr:write(string.format("\n%s: skip: load error.\n", filename))
 	 end
       end
-      xlua.progress(i, #lines)
+      xlua.progress(i, #csv)
       if i % 10 == 0 then
 	 collectgarbage()
       end

+ 1 - 0
lib/pairwise_transform.lua

@@ -4,5 +4,6 @@ local pairwise_transform = {}
 pairwise_transform = tablex.update(pairwise_transform, require('pairwise_transform_scale'))
 pairwise_transform = tablex.update(pairwise_transform, require('pairwise_transform_jpeg'))
 pairwise_transform = tablex.update(pairwise_transform, require('pairwise_transform_jpeg_scale'))
+pairwise_transform = tablex.update(pairwise_transform, require('pairwise_transform_user'))
 
 return pairwise_transform

+ 60 - 0
lib/pairwise_transform_user.lua

@@ -0,0 +1,60 @@
+local pairwise_utils = require 'pairwise_transform_utils'
+local iproc = require 'iproc'
+local gm = require 'graphicsmagick'
+local pairwise_transform = {}
+
+local function crop_if_large(x, y, scale_y, max_size, mod)
+   local tries = 4
+   if y:size(2) > max_size and y:size(3) > max_size then
+      assert(max_size % 4 == 0)
+      local rect_x, rect_y
+      for i = 1, tries do
+	 local yi = torch.random(0, y:size(2) - max_size)
+	 local xi = torch.random(0, y:size(3) - max_size)
+	 if mod then
+	    yi = yi - (yi % mod)
+	    xi = xi - (xi % mod)
+	 end
+	 rect_y = iproc.crop(y, xi, yi, xi + max_size, yi + max_size)
+	 rect_x = iproc.crop(x, xi / scale_y, yi / scale_y, xi / scale_y + max_size / scale_y, yi / scale_y + max_size / scale_y)
+	 -- ignore simple background
+	 if rect_y:float():std() >= 0 then
+	    break
+	 end
+      end
+      return rect_x, rect_y
+   else
+      return x, y
+   end
+end
+function pairwise_transform.user(x, y, size, offset, n, options)
+   assert(x:size(1) == y:size(1))
+
+   local scale_y = y:size(2) / x:size(2)
+   assert(x:size(3) == y:size(3) / scale_y)
+
+   x, y = crop_if_large(x, y, scale_y, options.max_size, options.scale, 2)
+   assert(x:size(3) == y:size(3) / scale_y and x:size(2) == y:size(2) / scale_y)
+   local batch = {}
+   local lowres_y = gm.Image(y, "RGB", "DHW"):
+      size(y:size(3) * 0.5, y:size(2) * 0.5, "Box"):
+      size(y:size(3), y:size(2), "Box"):
+      toTensor(t, "RGB", "DHW")
+   local xs, ys, ls = pairwise_utils.flip_augmentation(x, y, lowres_y)
+   for i = 1, n do
+      local t = (i % #xs) + 1
+      local xc, yc = pairwise_utils.active_cropping(xs[t], ys[t], ls[t], size, scale_y,
+						    options.active_cropping_rate,
+						    options.active_cropping_tries)
+      xc = iproc.byte2float(xc)
+      yc = iproc.byte2float(yc)
+      if options.rgb then
+      else
+	 yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
+	 xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
+      end
+      table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
+   end
+   return batch
+end
+return pairwise_transform

+ 38 - 3
train.lua

@@ -22,6 +22,13 @@ local function save_test_jpeg(model, rgb, file)
    local im, count = reconstruct.image(model, rgb)
    image.save(file, im)
 end
+local function save_test_user(model, rgb, file)
+   if settings.scale == 1 then
+      save_test_jpeg(model, rgb, file)
+   else
+      save_test_scale(model, rgb, file)
+   end
+end
 local function split_data(x, test_size)
    local index = torch.randperm(#x)
    local train_size = #x - test_size
@@ -117,9 +124,15 @@ local function create_criterion(model, loss)
 end
 local function transformer(model, x, is_validation, n, offset)
    local meta = {data = {}}
+   local y = nil
    if type(x) == "table" and type(x[2]) == "table" then
       meta = x[2]
-      x = compression.decompress(x[1])
+      if x[1].x and x[1].y then
+	 y = compression.decompress(x[1].y)
+	 x = compression.decompress(x[1].x)
+      else
+	 x = compression.decompress(x[1])
+      end
    else
       x = compression.decompress(x)
    end
@@ -197,6 +210,15 @@ local function transformer(model, x, is_validation, n, offset)
 					   settings.noise_level,
 					   settings.crop_size, offset,
 					   n, conf)
+   elseif settings.method == "user" then
+      local conf = tablex.update({
+	    max_size = settings.max_size,
+	    active_cropping_rate = active_cropping_rate,
+	    active_cropping_tries = active_cropping_tries,
+	    rgb = (settings.color == "rgb")}, meta)
+      return pairwise_transform.user(x, y,
+				     settings.crop_size, offset,
+				     n, conf)
    end
 end
 
@@ -248,8 +270,12 @@ local function remove_small_image(x)
    for i = 1, #x do
       local xe, meta, x_s
       xe = x[i]
-      if type(xe) == "table" and type(xe[2]) == "table" then
-	 x_s = compression.size(xe[1])
+      if type(x) == "table" and type(x[2]) == "table" then
+	 if xe[1].x and xe[1].y then
+	    x_s = compression.size(xe[1].y) -- y size
+	 else
+	    x_s = compression.size(xe[1])
+	 end
       else
 	 x_s = compression.size(xe)
       end
@@ -394,6 +420,11 @@ local function train()
 										    settings.scale,
 										    epoch, i))
 		  save_test_scale(model, test_image, log)
+	       elseif settings.method == "user" then
+		  local log = path.join(settings.model_dir,
+					("%s_best.%d-%d.png"):format(settings.name, 
+								     epoch, i))
+		  save_test_user(model, test_image, log)
 	       end
 	    else
 	       torch.save(settings.model_file, model:clearState(), "ascii")
@@ -410,6 +441,10 @@ local function train()
 					("noise%d_scale%.1f_best.png"):format(settings.noise_level, 
 									      settings.scale))
 		  save_test_scale(model, test_image, log)
+	       elseif settings.method == "user" then
+		  local log = path.join(settings.model_dir,
+					("%s_best.png"):format(settings.name))
+		  save_test_user(model, test_image, log)
 	       end
 	    end
 	 end

+ 32 - 1
waifu2x.lua

@@ -112,6 +112,24 @@ local function convert_image(opt)
 	    print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
 	 end
       end
+   elseif opt.m == "user" then
+      local model_path = opt.model_path
+      local model = w2nn.load_model(model_path, opt.force_cudnn)
+      if not model then
+	 error("Load Error: " .. model_path)
+      end
+      local t = sys.clock()
+
+      x = alpha_util.make_border(x, alpha, reconstruct.offset_size(model))
+      if opt.scale == 1 then
+	 new_x = image_f(model, x, opt.crop_size, opt.batch_size)
+      else
+	 new_x = scale_f(model, opt.scale, x, opt.crop_size, opt.batch_size)
+      end
+      new_x = alpha_util.composite(new_x, alpha) -- TODO: should it use model?
+      if not opt.q then
+	 print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
+      end
    else
       error("undefined method:" .. opt.method)
    end
@@ -121,6 +139,7 @@ local function convert_frames(opt)
    local model_path, scale_model, t
    local noise_scale_model = {}
    local noise_model = {}
+   local user_model = nil
    local scale_f, image_f
    if opt.tta == 1 then
       scale_f = function(model, scale, x, block_size, batch_size)
@@ -156,6 +175,8 @@ local function convert_frames(opt)
 	 model_path = path.join(opt.model_dir, string.format("noise%d_model.t7", opt.noise_level))
 	 noise_model[opt.noise_level] = w2nn.load_model(model_path, opt.force_cudnn)
       end
+   elseif opt.m == "user" then
+      user_model = w2nn.load_model(opt.model_path, opt.force_cudnn)
    end
    local fp = io.open(opt.l)
    if not fp then
@@ -189,6 +210,14 @@ local function convert_frames(opt)
 	       new_x = scale_f(scale_model, opt.scale, x, opt.crop_size, opt.batch_size)
 	    end
 	    new_x = alpha_util.composite(new_x, alpha, scale_model)
+	 elseif opt.m == "user" then
+	    x = alpha_util.make_border(x, alpha, reconstruct.offset_size(user_model))
+	    if opt.scale == 1 then
+	       new_x = image_f(user_model, x, opt.crop_size, opt.batch_size)
+	    else
+	       new_x = scale_f(user_model, opt.scale, x, opt.crop_size, opt.batch_size)
+	    end
+	    new_x = alpha_util.composite(new_x, alpha)
 	 else
 	    error("undefined method:" .. opt.method)
 	 end
@@ -218,7 +247,8 @@ local function waifu2x()
    cmd:option("-o", "(auto)", 'path to output file')
    cmd:option("-depth", 8, 'bit-depth of the output image (8|16)')
    cmd:option("-model_dir", "./models/upconv_7/art", 'path to model directory')
-   cmd:option("-m", "noise_scale", 'method (noise|scale|noise_scale)')
+   cmd:option("-name", "user", 'model name for user method')
+   cmd:option("-m", "noise_scale", 'method (noise|scale|noise_scale|user)')
    cmd:option("-method", "", 'same as -m')
    cmd:option("-noise_level", 1, '(1|2|3)')
    cmd:option("-crop_size", 128, 'patch size per process')
@@ -247,6 +277,7 @@ local function waifu2x()
    end
    opt.force_cudnn = opt.force_cudnn == 1
    opt.q = opt.q == 1
+   opt.model_path = path.join(opt.model_dir, string.format("%s_model.t7", opt.name))
 
    if string.len(opt.l) == 0 then
       convert_image(opt)