|
@@ -14,13 +14,13 @@ cmd:text()
|
|
|
cmd:text("waifu2x-benchmark")
|
|
|
cmd:text("Options:")
|
|
|
|
|
|
-cmd:option("-seed", 11, 'fixed input seed')
|
|
|
cmd:option("-dir", "./data/test", 'test image directory')
|
|
|
cmd:option("-model1_dir", "./models/anime_style_art", 'model1 directory')
|
|
|
cmd:option("-model2_dir", "./models/anime_style_art_rgb", 'model2 directory')
|
|
|
cmd:option("-method", "scale", '(scale|noise)')
|
|
|
-cmd:option("-noise_level", 1, '(1|2)')
|
|
|
-cmd:option("-color_weight", "y", '(y|rgb)')
|
|
|
+cmd:option("-filter", "Box", "downscaling filter (Box|Jinc)")
|
|
|
+cmd:option("-color", "rgb", '(rgb|y)')
|
|
|
+cmd:option("-noise_level", 1, 'model noise level')
|
|
|
cmd:option("-jpeg_quality", 75, 'jpeg quality')
|
|
|
cmd:option("-jpeg_times", 1, 'jpeg compression times')
|
|
|
cmd:option("-jpeg_quality_down", 5, 'value of jpeg quality to decrease each times')
|
|
@@ -49,7 +49,7 @@ local function YPSNR(x1, x2)
|
|
|
return 10 * math.log10(1.0 / mse)
|
|
|
end
|
|
|
|
|
|
-local function transform_jpeg(x)
|
|
|
+local function transform_jpeg(x, opt)
|
|
|
for i = 1, opt.jpeg_times do
|
|
|
jpeg = gm.Image(x, "RGB", "DHW")
|
|
|
jpeg:format("jpeg")
|
|
@@ -60,52 +60,54 @@ local function transform_jpeg(x)
|
|
|
end
|
|
|
return x
|
|
|
end
|
|
|
-local function transform_scale(x)
|
|
|
+local function transform_scale(x, opt)
|
|
|
return iproc.scale(x,
|
|
|
x:size(3) * 0.5,
|
|
|
x:size(2) * 0.5,
|
|
|
- "Box")
|
|
|
+ opt.filter)
|
|
|
end
|
|
|
|
|
|
-local function benchmark(color_weight, x, input_func, v1_noise, v2_noise)
|
|
|
- local v1_mse = 0
|
|
|
- local v2_mse = 0
|
|
|
- local v1_psnr = 0
|
|
|
- local v2_psnr = 0
|
|
|
+local function benchmark(opt, x, input_func, model1, model2)
|
|
|
+ local model1_mse = 0
|
|
|
+ local model2_mse = 0
|
|
|
+ local model1_psnr = 0
|
|
|
+ local model2_psnr = 0
|
|
|
|
|
|
for i = 1, #x do
|
|
|
local ground_truth = x[i]
|
|
|
- local input, v1_output, v2_output
|
|
|
+ local input, model1_output, model2_output
|
|
|
|
|
|
- input = input_func(ground_truth)
|
|
|
+ input = input_func(ground_truth, opt)
|
|
|
input = input:float():div(255)
|
|
|
ground_truth = ground_truth:float():div(255)
|
|
|
|
|
|
t = sys.clock()
|
|
|
if input:size(3) == ground_truth:size(3) then
|
|
|
- v1_output = reconstruct.image(v1_noise, input)
|
|
|
- v2_output = reconstruct.image(v2_noise, input)
|
|
|
+ model1_output = reconstruct.image(model1, input)
|
|
|
+ model2_output = reconstruct.image(model2, input)
|
|
|
else
|
|
|
- v1_output = reconstruct.scale(v1_noise, 2.0, input)
|
|
|
- v2_output = reconstruct.scale(v2_noise, 2.0, input)
|
|
|
+ model1_output = reconstruct.scale(model1, 2.0, input)
|
|
|
+ model2_output = reconstruct.scale(model2, 2.0, input)
|
|
|
end
|
|
|
- if color_weight == "y" then
|
|
|
- v1_mse = v1_mse + YMSE(ground_truth, v1_output)
|
|
|
- v1_psnr = v1_psnr + YPSNR(ground_truth, v1_output)
|
|
|
- v2_mse = v2_mse + YMSE(ground_truth, v2_output)
|
|
|
- v2_psnr = v2_psnr + YPSNR(ground_truth, v2_output)
|
|
|
- elseif color_weight == "rgb" then
|
|
|
- v1_mse = v1_mse + MSE(ground_truth, v1_output)
|
|
|
- v1_psnr = v1_psnr + PSNR(ground_truth, v1_output)
|
|
|
- v2_mse = v2_mse + MSE(ground_truth, v2_output)
|
|
|
- v2_psnr = v2_psnr + PSNR(ground_truth, v2_output)
|
|
|
+ if opt.color == "y" then
|
|
|
+ model1_mse = model1_mse + YMSE(ground_truth, model1_output)
|
|
|
+ model1_psnr = model1_psnr + YPSNR(ground_truth, model1_output)
|
|
|
+ model2_mse = model2_mse + YMSE(ground_truth, model2_output)
|
|
|
+ model2_psnr = model2_psnr + YPSNR(ground_truth, model2_output)
|
|
|
+ elseif opt.color == "rgb" then
|
|
|
+ model1_mse = model1_mse + MSE(ground_truth, model1_output)
|
|
|
+ model1_psnr = model1_psnr + PSNR(ground_truth, model1_output)
|
|
|
+ model2_mse = model2_mse + MSE(ground_truth, model2_output)
|
|
|
+ model2_psnr = model2_psnr + PSNR(ground_truth, model2_output)
|
|
|
+ else
|
|
|
+ error("Unknown color: " .. opt.color)
|
|
|
end
|
|
|
|
|
|
io.stdout:write(
|
|
|
- string.format("%d/%d; v1_mse=%f, v2_mse=%f, v1_psnr=%f, v2_psnr=%f \r",
|
|
|
+ string.format("%d/%d; model1_mse=%f, model2_mse=%f, model1_psnr=%f, model2_psnr=%f \r",
|
|
|
i, #x,
|
|
|
- v1_mse / i, v2_mse / i,
|
|
|
- v1_psnr / i, v2_psnr / i
|
|
|
+ model1_mse / i, model2_mse / i,
|
|
|
+ model1_psnr / i, model2_psnr / i
|
|
|
)
|
|
|
)
|
|
|
io.stdout:flush()
|
|
@@ -123,16 +125,14 @@ local function load_data(test_dir)
|
|
|
end
|
|
|
|
|
|
print(opt)
|
|
|
-torch.manualSeed(opt.seed)
|
|
|
-cutorch.manualSeed(opt.seed)
|
|
|
if opt.method == "scale" then
|
|
|
- local v1 = torch.load(path.join(opt.model1_dir, "scale2.0x_model.t7"), "ascii")
|
|
|
- local v2 = torch.load(path.join(opt.model2_dir, "scale2.0x_model.t7"), "ascii")
|
|
|
+ local model1 = torch.load(path.join(opt.model1_dir, "scale2.0x_model.t7"), "ascii")
|
|
|
+ local model2 = torch.load(path.join(opt.model2_dir, "scale2.0x_model.t7"), "ascii")
|
|
|
local test_x = load_data(opt.dir)
|
|
|
- benchmark(opt.color_weight, test_x, transform_scale, v1, v2)
|
|
|
+ benchmark(opt, test_x, transform_scale, model1, model2)
|
|
|
elseif opt.method == "noise" then
|
|
|
- local v1 = torch.load(path.join(opt.model1_dir, string.format("noise%d_model.t7", opt.noise_level)), "ascii")
|
|
|
- local v2 = torch.load(path.join(opt.model2_dir, string.format("noise%d_model.t7", opt.noise_level)), "ascii")
|
|
|
+ local model1 = torch.load(path.join(opt.model1_dir, string.format("noise%d_model.t7", opt.noise_level)), "ascii")
|
|
|
+ local model2 = torch.load(path.join(opt.model2_dir, string.format("noise%d_model.t7", opt.noise_level)), "ascii")
|
|
|
local test_x = load_data(opt.dir)
|
|
|
- benchmark(opt.color_weight, test_x, transform_jpeg, v1, v2)
|
|
|
+ benchmark(opt, test_x, transform_jpeg, model1, model2)
|
|
|
end
|