|
@@ -1,7 +1,9 @@
|
|
|
require 'w2nn'
|
|
|
|
|
|
--- ref: http://arxiv.org/abs/1502.01852
|
|
|
--- ref: http://arxiv.org/abs/1501.00092
|
|
|
+-- ref: https://arxiv.org/abs/1502.01852
|
|
|
+-- ref: https://arxiv.org/abs/1501.00092
|
|
|
+-- ref: https://arxiv.org/abs/1709.01507
|
|
|
+-- ref: https://arxiv.org/abs/1505.04597
|
|
|
local srcnn = {}
|
|
|
|
|
|
local function msra_filler(mod)
|
|
@@ -240,9 +242,6 @@ local function SEBlock(backend, n_output, r)
|
|
|
con:add(attention)
|
|
|
return con
|
|
|
end
|
|
|
--- I devised this arch for the block size and global average pooling problem,
|
|
|
--- but SEBlock may possibly learn multi-scale input or just a normalization. No problems occur.
|
|
|
--- So this arch is not used.
|
|
|
local function SpatialSEBlock(backend, ave_size, n_output, r)
|
|
|
local con = nn.ConcatTable(2)
|
|
|
local attention = nn.Sequential()
|
|
@@ -353,8 +352,6 @@ function srcnn.vgg_7(backend, ch)
|
|
|
model.w2nn_offset = 7
|
|
|
model.w2nn_scale_factor = 1
|
|
|
model.w2nn_channels = ch
|
|
|
- --model:cuda()
|
|
|
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
|
|
|
return model
|
|
|
end
|
|
@@ -378,7 +375,6 @@ function srcnn.upconv_7(backend, ch)
|
|
|
model:add(w2nn.InplaceClip01())
|
|
|
model:add(nn.View(-1):setNumInputDims(3))
|
|
|
|
|
|
-
|
|
|
model.w2nn_arch_name = "upconv_7"
|
|
|
model.w2nn_offset = 14
|
|
|
model.w2nn_scale_factor = 2
|
|
@@ -414,9 +410,6 @@ function srcnn.upconv_7l(backend, ch)
|
|
|
model.w2nn_resize = true
|
|
|
model.w2nn_channels = ch
|
|
|
|
|
|
- --model:cuda()
|
|
|
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
-
|
|
|
return model
|
|
|
end
|
|
|
|
|
@@ -439,9 +432,6 @@ function srcnn.resnet_14l(backend, ch)
|
|
|
model.w2nn_resize = true
|
|
|
model.w2nn_channels = ch
|
|
|
|
|
|
- --model:cuda()
|
|
|
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
-
|
|
|
return model
|
|
|
end
|
|
|
|
|
@@ -557,6 +547,21 @@ function srcnn.fcn_v1(backend, ch)
|
|
|
|
|
|
return model
|
|
|
end
|
|
|
+
|
|
|
+-- Cascaded Residual U-Net with SEBlock
|
|
|
+
|
|
|
+local function unet_conv(backend, n_input, n_middle, n_output, se)
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ if se then
|
|
|
+ model:add(SEBlock(backend, n_output, 8))
|
|
|
+ model:add(w2nn.ScaleTable())
|
|
|
+ end
|
|
|
+ return model
|
|
|
+end
|
|
|
local function unet_branch(backend, insert, backend, n_input, n_output, depad)
|
|
|
local block = nn.Sequential()
|
|
|
local con = nn.ConcatTable(2)
|
|
@@ -573,61 +578,47 @@ local function unet_branch(backend, insert, backend, n_input, n_output, depad)
|
|
|
model:add(nn.CAddTable())
|
|
|
return model
|
|
|
end
|
|
|
-local function unet_conv(backend, n_input, n_middle, n_output, se)
|
|
|
+local function cunet_unet1(backend, ch, deconv)
|
|
|
+ local block1 = unet_conv(backend, 64, 128, 64, true)
|
|
|
local model = nn.Sequential()
|
|
|
- model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- if se then
|
|
|
- model:add(SEBlock(backend, n_output, 8))
|
|
|
- model:add(w2nn.ScaleTable())
|
|
|
+ model:add(unet_conv(backend, ch, 32, 64, false))
|
|
|
+ model:add(unet_branch(backend, block1, backend, 64, 64, 4))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1))
|
|
|
+ if deconv then
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
|
+ else
|
|
|
+ model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
end
|
|
|
return model
|
|
|
end
|
|
|
-
|
|
|
--- Cascaded Residual Channel Attention U-Net
|
|
|
-function srcnn.upcunet(backend, ch)
|
|
|
- -- Residual U-Net
|
|
|
- local function unet1(backend, ch, deconv)
|
|
|
- local block1 = unet_conv(backend, 64, 128, 64, true)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(unet_conv(backend, ch, 32, 64, false))
|
|
|
- model:add(unet_branch(backend, block1, backend, 64, 64, 4))
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1))
|
|
|
- if deconv then
|
|
|
- model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
|
- else
|
|
|
- model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
- end
|
|
|
- return model
|
|
|
- end
|
|
|
- local function unet2(backend, ch, deconv)
|
|
|
- local block1 = unet_conv(backend, 128, 256, 128, true)
|
|
|
- local block2 = nn.Sequential()
|
|
|
- block2:add(unet_conv(backend, 64, 64, 128, true))
|
|
|
- block2:add(unet_branch(backend, block1, backend, 128, 128, 4))
|
|
|
- block2:add(unet_conv(backend, 128, 64, 64, true))
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(unet_conv(backend, ch, 32, 64, false))
|
|
|
- model:add(unet_branch(backend, block2, backend, 64, 64, 16))
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1))
|
|
|
- if deconv then
|
|
|
- model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
|
- else
|
|
|
- model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
- end
|
|
|
- return model
|
|
|
+local function cunet_unet2(backend, ch, deconv)
|
|
|
+ local block1 = unet_conv(backend, 128, 256, 128, true)
|
|
|
+ local block2 = nn.Sequential()
|
|
|
+ block2:add(unet_conv(backend, 64, 64, 128, true))
|
|
|
+ block2:add(unet_branch(backend, block1, backend, 128, 128, 4))
|
|
|
+ block2:add(unet_conv(backend, 128, 64, 64, true))
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(unet_conv(backend, ch, 32, 64, false))
|
|
|
+ model:add(unet_branch(backend, block2, backend, 64, 64, 16))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1))
|
|
|
+ if deconv then
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
|
+ else
|
|
|
+ model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
end
|
|
|
+ return model
|
|
|
+end
|
|
|
+-- 2x
|
|
|
+function srcnn.upcunet(backend, ch)
|
|
|
local model = nn.Sequential()
|
|
|
local con = nn.ConcatTable()
|
|
|
local aux_con = nn.ConcatTable()
|
|
|
|
|
|
-- 2 cascade
|
|
|
- model:add(unet1(backend, ch, true))
|
|
|
- con:add(unet2(backend, ch, false))
|
|
|
+ model:add(cunet_unet1(backend, ch, true))
|
|
|
+ con:add(cunet_unet2(backend, ch, false))
|
|
|
con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
|
|
|
|
|
|
aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
|
|
@@ -649,47 +640,15 @@ function srcnn.upcunet(backend, ch)
|
|
|
|
|
|
return model
|
|
|
end
|
|
|
--- cunet for 1x
|
|
|
+-- 1x
|
|
|
function srcnn.cunet(backend, ch)
|
|
|
- local function unet1(backend, ch, deconv)
|
|
|
- local block1 = unet_conv(backend, 64, 128, 64, true)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(unet_conv(backend, ch, 32, 64, false))
|
|
|
- model:add(unet_branch(backend, block1, backend, 64, 64, 4))
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1))
|
|
|
- if deconv then
|
|
|
- model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
|
- else
|
|
|
- model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
- end
|
|
|
- return model
|
|
|
- end
|
|
|
- local function unet2(backend, ch, deconv)
|
|
|
- local block1 = unet_conv(backend, 128, 256, 128, true)
|
|
|
- local block2 = nn.Sequential()
|
|
|
- block2:add(unet_conv(backend, 64, 64, 128, true))
|
|
|
- block2:add(unet_branch(backend, block1, backend, 128, 128, 4))
|
|
|
- block2:add(unet_conv(backend, 128, 64, 64, true))
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(unet_conv(backend, ch, 32, 64, false))
|
|
|
- model:add(unet_branch(backend, block2, backend, 64, 64, 16))
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1))
|
|
|
- if deconv then
|
|
|
- model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
|
- else
|
|
|
- model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
- end
|
|
|
- return model
|
|
|
- end
|
|
|
local model = nn.Sequential()
|
|
|
local con = nn.ConcatTable()
|
|
|
local aux_con = nn.ConcatTable()
|
|
|
|
|
|
-- 2 cascade
|
|
|
- model:add(unet1(backend, ch))
|
|
|
- con:add(unet2(backend, ch))
|
|
|
+ model:add(cunet_unet1(backend, ch, false))
|
|
|
+ con:add(cunet_unet2(backend, ch, false))
|
|
|
con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
|
|
|
|
|
|
aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
|
|
@@ -711,6 +670,7 @@ function srcnn.cunet(backend, ch)
|
|
|
|
|
|
return model
|
|
|
end
|
|
|
+
|
|
|
local function bench()
|
|
|
local sys = require 'sys'
|
|
|
cudnn.benchmark = true
|
|
@@ -719,7 +679,7 @@ local function bench()
|
|
|
local backend = "cudnn"
|
|
|
local ch = 3
|
|
|
local batch_size = 1
|
|
|
- local output_size = 320
|
|
|
+ local output_size = 256
|
|
|
for k = 1, #arch do
|
|
|
model = srcnn[arch[k]](backend, ch):cuda()
|
|
|
model:evaluate()
|
|
@@ -739,7 +699,7 @@ local function bench()
|
|
|
model:forward(x)
|
|
|
end
|
|
|
t = sys.clock()
|
|
|
- for i = 1, 100 do
|
|
|
+ for i = 1, 10 do
|
|
|
local x = torch.Tensor(batch_size, ch, crop_size, crop_size):uniform():cuda()
|
|
|
local z = model:forward(x)
|
|
|
dummy:add(z)
|