|
@@ -4,84 +4,103 @@ local iproc = require './iproc'
|
|
|
local reconstruct = require './reconstruct'
|
|
|
local pairwise_transform = {}
|
|
|
|
|
|
+local function random_half(src, p, min_size)
|
|
|
+ p = p or 0.5
|
|
|
+ local filter = ({"Box","Blackman", "SincFast", "Jinc"})[torch.random(1, 4)]
|
|
|
+ if p > torch.uniform() then
|
|
|
+ return iproc.scale(src, src:size(3) * 0.5, src:size(2) * 0.5, filter)
|
|
|
+ else
|
|
|
+ return src
|
|
|
+ end
|
|
|
+end
|
|
|
+local function color_augment(x)
|
|
|
+ local color_scale = torch.Tensor(3):uniform(0.8, 1.2)
|
|
|
+ x = x:float():div(255)
|
|
|
+ for i = 1, 3 do
|
|
|
+ x[i]:mul(color_scale[i])
|
|
|
+ end
|
|
|
+ x[torch.lt(x, 0.0)] = 0.0
|
|
|
+ x[torch.gt(x, 1.0)] = 1.0
|
|
|
+ return x:mul(255):byte()
|
|
|
+end
|
|
|
+local function flip_augment(x, y)
|
|
|
+ local flip = torch.random(1, 4)
|
|
|
+ if y then
|
|
|
+ if flip == 1 then
|
|
|
+ x = image.hflip(x)
|
|
|
+ y = image.hflip(y)
|
|
|
+ elseif flip == 2 then
|
|
|
+ x = image.vflip(x)
|
|
|
+ y = image.vflip(y)
|
|
|
+ elseif flip == 3 then
|
|
|
+ x = image.hflip(image.vflip(x))
|
|
|
+ y = image.hflip(image.vflip(y))
|
|
|
+ elseif flip == 4 then
|
|
|
+ end
|
|
|
+ return x, y
|
|
|
+ else
|
|
|
+ if flip == 1 then
|
|
|
+ x = image.hflip(x)
|
|
|
+ elseif flip == 2 then
|
|
|
+ x = image.vflip(x)
|
|
|
+ elseif flip == 3 then
|
|
|
+ x = image.hflip(image.vflip(x))
|
|
|
+ elseif flip == 4 then
|
|
|
+ end
|
|
|
+ return x
|
|
|
+ end
|
|
|
+end
|
|
|
+local INTERPOLATION_PADDING = 16
|
|
|
function pairwise_transform.scale(src, scale, size, offset, options)
|
|
|
- options = options or {}
|
|
|
- local yi = torch.random(0, src:size(2) - size - 1)
|
|
|
- local xi = torch.random(0, src:size(3) - size - 1)
|
|
|
+ options = options or {color_augment = true, random_half = true}
|
|
|
+ if options.random_half then
|
|
|
+ src = random_half(src)
|
|
|
+ end
|
|
|
+ local yi = torch.random(INTERPOLATION_PADDING, src:size(2) - size - INTERPOLATION_PADDING)
|
|
|
+ local xi = torch.random(INTERPOLATION_PADDING, src:size(3) - size - INTERPOLATION_PADDING)
|
|
|
local down_scale = 1.0 / scale
|
|
|
- local y = image.crop(src, xi, yi, xi + size, yi + size)
|
|
|
- local flip = torch.random(1, 4)
|
|
|
- local nega = torch.random(0, 1)
|
|
|
+ local y = image.crop(src,
|
|
|
+ xi - INTERPOLATION_PADDING, yi - INTERPOLATION_PADDING,
|
|
|
+ xi + size + INTERPOLATION_PADDING, yi + size + INTERPOLATION_PADDING)
|
|
|
local filters = {
|
|
|
"Box", -- 0.012756949974688
|
|
|
"Blackman", -- 0.013191924552285
|
|
|
--"Cartom", -- 0.013753536746706
|
|
|
--"Hanning", -- 0.013761314529647
|
|
|
--"Hermite", -- 0.013850225205266
|
|
|
- --"SincFast", -- 0.014095824314306
|
|
|
- --"Jinc", -- 0.014244299255442
|
|
|
+ "SincFast", -- 0.014095824314306
|
|
|
+ "Jinc", -- 0.014244299255442
|
|
|
}
|
|
|
local downscale_filter = filters[torch.random(1, #filters)]
|
|
|
|
|
|
- if flip == 1 then
|
|
|
- y = image.hflip(y)
|
|
|
- elseif flip == 2 then
|
|
|
- y = image.vflip(y)
|
|
|
- elseif flip == 3 then
|
|
|
- y = image.hflip(image.vflip(y))
|
|
|
- elseif flip == 4 then
|
|
|
- -- none
|
|
|
- end
|
|
|
+ y = flip_augment(y)
|
|
|
if options.color_augment then
|
|
|
- y = y:float():div(255)
|
|
|
- local color_scale = torch.Tensor(3):uniform(0.8, 1.2)
|
|
|
- for i = 1, 3 do
|
|
|
- y[i]:mul(color_scale[i])
|
|
|
- end
|
|
|
- y[torch.lt(y, 0)] = 0
|
|
|
- y[torch.gt(y, 1.0)] = 1.0
|
|
|
- y = y:mul(255):byte()
|
|
|
+ y = color_augment(y)
|
|
|
end
|
|
|
local x = iproc.scale(y, y:size(3) * down_scale, y:size(2) * down_scale, downscale_filter)
|
|
|
- if options.noise and (options.noise_ratio or 0.5) > torch.uniform() then
|
|
|
- -- add noise
|
|
|
- local quality = {torch.random(70, 90)}
|
|
|
- for i = 1, #quality do
|
|
|
- x = gm.Image(x, "RGB", "DHW")
|
|
|
- x:format("jpeg")
|
|
|
- local blob, len = x:toBlob(quality[i])
|
|
|
- x:fromBlob(blob, len)
|
|
|
- x = x:toTensor("byte", "RGB", "DHW")
|
|
|
- end
|
|
|
- end
|
|
|
- if options.denoise_model and (options.denoise_ratio or 0.5) > torch.uniform() then
|
|
|
- x = reconstruct(options.denoise_model, x:float():div(255), offset):mul(255):byte()
|
|
|
- end
|
|
|
x = iproc.scale(x, y:size(3), y:size(2))
|
|
|
y = y:float():div(255)
|
|
|
x = x:float():div(255)
|
|
|
y = image.rgb2yuv(y)[1]:reshape(1, y:size(2), y:size(3))
|
|
|
x = image.rgb2yuv(x)[1]:reshape(1, x:size(2), x:size(3))
|
|
|
+
|
|
|
+ y = image.crop(y, INTERPOLATION_PADDING + offset, INTERPOLATION_PADDING + offset, y:size(3) - offset - INTERPOLATION_PADDING, y:size(2) - offset - INTERPOLATION_PADDING)
|
|
|
+ x = image.crop(x, INTERPOLATION_PADDING, INTERPOLATION_PADDING, x:size(3) - INTERPOLATION_PADDING, x:size(2) - INTERPOLATION_PADDING)
|
|
|
|
|
|
- return x, image.crop(y, offset, offset, size - offset, size - offset)
|
|
|
+ return x, y
|
|
|
end
|
|
|
-function pairwise_transform.jpeg_(src, quality, size, offset, color_augment)
|
|
|
- if color_augment == nil then color_augment = true end
|
|
|
+function pairwise_transform.jpeg_(src, quality, size, offset, options)
|
|
|
+ options = options or {color_augment = true, random_half = true}
|
|
|
+ if options.random_half then
|
|
|
+ src = random_half(src)
|
|
|
+ end
|
|
|
local yi = torch.random(0, src:size(2) - size - 1)
|
|
|
local xi = torch.random(0, src:size(3) - size - 1)
|
|
|
local y = src
|
|
|
local x
|
|
|
- local flip = torch.random(1, 4)
|
|
|
|
|
|
- if color_augment then
|
|
|
- local color_scale = torch.Tensor(3):uniform(0.8, 1.2)
|
|
|
- y = y:float():div(255)
|
|
|
- for i = 1, 3 do
|
|
|
- y[i]:mul(color_scale[i])
|
|
|
- end
|
|
|
- y[torch.lt(y, 0)] = 0
|
|
|
- y[torch.gt(y, 1.0)] = 1.0
|
|
|
- y = y:mul(255):byte()
|
|
|
+ if options.color_augment then
|
|
|
+ y = color_augment(y)
|
|
|
end
|
|
|
x = y
|
|
|
for i = 1, #quality do
|
|
@@ -94,48 +113,115 @@ function pairwise_transform.jpeg_(src, quality, size, offset, color_augment)
|
|
|
|
|
|
y = image.crop(y, xi, yi, xi + size, yi + size)
|
|
|
x = image.crop(x, xi, yi, xi + size, yi + size)
|
|
|
- x = x:float():div(255)
|
|
|
y = y:float():div(255)
|
|
|
+ x = x:float():div(255)
|
|
|
+ x, y = flip_augment(x, y)
|
|
|
|
|
|
- if flip == 1 then
|
|
|
- y = image.hflip(y)
|
|
|
- x = image.hflip(x)
|
|
|
- elseif flip == 2 then
|
|
|
- y = image.vflip(y)
|
|
|
- x = image.vflip(x)
|
|
|
- elseif flip == 3 then
|
|
|
- y = image.hflip(image.vflip(y))
|
|
|
- x = image.hflip(image.vflip(x))
|
|
|
- elseif flip == 4 then
|
|
|
- -- none
|
|
|
- end
|
|
|
y = image.rgb2yuv(y)[1]:reshape(1, y:size(2), y:size(3))
|
|
|
x = image.rgb2yuv(x)[1]:reshape(1, x:size(2), x:size(3))
|
|
|
|
|
|
return x, image.crop(y, offset, offset, size - offset, size - offset)
|
|
|
end
|
|
|
-function pairwise_transform.jpeg(src, level, size, offset, color_augment)
|
|
|
+function pairwise_transform.jpeg(src, level, size, offset, options)
|
|
|
if level == 1 then
|
|
|
return pairwise_transform.jpeg_(src, {torch.random(65, 85)},
|
|
|
size, offset,
|
|
|
- color_augment)
|
|
|
+ options)
|
|
|
elseif level == 2 then
|
|
|
local r = torch.uniform()
|
|
|
if r > 0.6 then
|
|
|
- return pairwise_transform.jpeg_(src, {torch.random(27, 80)},
|
|
|
+ return pairwise_transform.jpeg_(src, {torch.random(27, 70)},
|
|
|
size, offset,
|
|
|
- color_augment)
|
|
|
+ options)
|
|
|
elseif r > 0.3 then
|
|
|
- local quality1 = torch.random(32, 40)
|
|
|
- local quality2 = quality1 - 5
|
|
|
+ local quality1 = torch.random(37, 70)
|
|
|
+ local quality2 = quality1 - torch.random(5, 10)
|
|
|
return pairwise_transform.jpeg_(src, {quality1, quality2},
|
|
|
- size, offset,
|
|
|
- color_augment)
|
|
|
+ size, offset,
|
|
|
+ options)
|
|
|
else
|
|
|
- local quality1 = torch.random(47, 70)
|
|
|
- return pairwise_transform.jpeg_(src, {quality1, quality1 - 10, quality1 - 20},
|
|
|
+ local quality1 = torch.random(52, 70)
|
|
|
+ return pairwise_transform.jpeg_(src,
|
|
|
+ {quality1,
|
|
|
+ quality1 - torch.random(5, 15),
|
|
|
+ quality1 - torch.random(15, 25)},
|
|
|
size, offset,
|
|
|
- color_augment)
|
|
|
+ options)
|
|
|
+ end
|
|
|
+ else
|
|
|
+ error("unknown noise level: " .. level)
|
|
|
+ end
|
|
|
+end
|
|
|
+function pairwise_transform.jpeg_scale_(src, scale, quality, size, offset, options)
|
|
|
+ if options.random_half then
|
|
|
+ src = random_half(src)
|
|
|
+ end
|
|
|
+ local down_scale = 1.0 / scale
|
|
|
+ local filters = {
|
|
|
+ "Box", -- 0.012756949974688
|
|
|
+ --"Blackman", -- 0.013191924552285
|
|
|
+ --"Cartom", -- 0.013753536746706
|
|
|
+ --"Hanning", -- 0.013761314529647
|
|
|
+ --"Hermite", -- 0.013850225205266
|
|
|
+ --"SincFast", -- 0.014095824314306
|
|
|
+ --"Jinc", -- 0.014244299255442
|
|
|
+ }
|
|
|
+ local downscale_filter = filters[torch.random(1, #filters)]
|
|
|
+ local yi = torch.random(INTERPOLATION_PADDING, src:size(2) - size - INTERPOLATION_PADDING)
|
|
|
+ local xi = torch.random(INTERPOLATION_PADDING, src:size(3) - size - INTERPOLATION_PADDING)
|
|
|
+ local y = src
|
|
|
+ local x
|
|
|
+
|
|
|
+ if options.color_augment then
|
|
|
+ y = color_augment(y)
|
|
|
+ end
|
|
|
+ x = y
|
|
|
+ x = iproc.scale(x, y:size(3) * down_scale, y:size(2) * down_scale, downscale_filter)
|
|
|
+ for i = 1, #quality do
|
|
|
+ x = gm.Image(x, "RGB", "DHW")
|
|
|
+ x:format("jpeg")
|
|
|
+ local blob, len = x:toBlob(quality[i])
|
|
|
+ x:fromBlob(blob, len)
|
|
|
+ x = x:toTensor("byte", "RGB", "DHW")
|
|
|
+ end
|
|
|
+ x = iproc.scale(x, y:size(3), y:size(2))
|
|
|
+ y = image.crop(y,
|
|
|
+ xi, yi,
|
|
|
+ xi + size, yi + size)
|
|
|
+ x = image.crop(x,
|
|
|
+ xi, yi,
|
|
|
+ xi + size, yi + size)
|
|
|
+ x = x:float():div(255)
|
|
|
+ y = y:float():div(255)
|
|
|
+ x, y = flip_augment(x, y)
|
|
|
+
|
|
|
+ y = image.rgb2yuv(y)[1]:reshape(1, y:size(2), y:size(3))
|
|
|
+ x = image.rgb2yuv(x)[1]:reshape(1, x:size(2), x:size(3))
|
|
|
+
|
|
|
+ return x, image.crop(y, offset, offset, size - offset, size - offset)
|
|
|
+end
|
|
|
+function pairwise_transform.jpeg_scale(src, scale, level, size, offset, options)
|
|
|
+ options = options or {color_augment = true, random_half = true}
|
|
|
+ if level == 1 then
|
|
|
+ return pairwise_transform.jpeg_scale_(src, scale, {torch.random(65, 85)},
|
|
|
+ size, offset, options)
|
|
|
+ elseif level == 2 then
|
|
|
+ local r = torch.uniform()
|
|
|
+ if r > 0.6 then
|
|
|
+ return pairwise_transform.jpeg_scale_(src, scale, {torch.random(27, 70)},
|
|
|
+ size, offset, options)
|
|
|
+ elseif r > 0.3 then
|
|
|
+ local quality1 = torch.random(37, 70)
|
|
|
+ local quality2 = quality1 - torch.random(5, 10)
|
|
|
+ return pairwise_transform.jpeg_scale_(src, scale, {quality1, quality2},
|
|
|
+ size, offset, options)
|
|
|
+ else
|
|
|
+ local quality1 = torch.random(52, 70)
|
|
|
+ return pairwise_transform.jpeg_scale_(src, scale,
|
|
|
+ {quality1,
|
|
|
+ quality1 - torch.random(5, 15),
|
|
|
+ quality1 - torch.random(15, 25)},
|
|
|
+ size, offset, options)
|
|
|
end
|
|
|
else
|
|
|
error("unknown noise level: " .. level)
|
|
@@ -143,32 +229,51 @@ function pairwise_transform.jpeg(src, level, size, offset, color_augment)
|
|
|
end
|
|
|
|
|
|
local function test_jpeg()
|
|
|
- local loader = require 'image_loader'
|
|
|
- local src = loader.load_byte("a.jpg")
|
|
|
-
|
|
|
+ local loader = require './image_loader'
|
|
|
+ local src = loader.load_byte("../images/miku_CC_BY-NC.jpg")
|
|
|
+ local y, x = pairwise_transform.jpeg_(src, {}, 128, 0, false)
|
|
|
+ image.display({image = y, legend = "y:0"})
|
|
|
+ image.display({image = x, legend = "x:0"})
|
|
|
for i = 2, 9 do
|
|
|
- local y, x = pairwise_transform.jpeg_(src, {i * 10}, 128, 0, false)
|
|
|
+ local y, x = pairwise_transform.jpeg_(pairwise_transform.random_half(src),
|
|
|
+ {i * 10}, 128, 0, {color_augment = false, random_half = true})
|
|
|
image.display({image = y, legend = "y:" .. (i * 10), max=1,min=0})
|
|
|
image.display({image = x, legend = "x:" .. (i * 10),max=1,min=0})
|
|
|
--print(x:mean(), y:mean())
|
|
|
end
|
|
|
end
|
|
|
-local function test_scale()
|
|
|
- require 'nn'
|
|
|
- require 'cudnn'
|
|
|
- require './LeakyReLU'
|
|
|
-
|
|
|
- local loader = require 'image_loader'
|
|
|
- local src = loader.load_byte("e.jpg")
|
|
|
|
|
|
+local function test_scale()
|
|
|
+ local loader = require './image_loader'
|
|
|
+ local src = loader.load_byte("../images/miku_CC_BY-NC.jpg")
|
|
|
+ for i = 1, 9 do
|
|
|
+ local y, x = pairwise_transform.scale(src, 2.0, 128, 7, {color_augment = true, random_half = true})
|
|
|
+ image.display({image = y, legend = "y:" .. (i * 10), min = 0, max = 1})
|
|
|
+ image.display({image = x, legend = "x:" .. (i * 10), min = 0, max = 1})
|
|
|
+ print(y:size(), x:size())
|
|
|
+ --print(x:mean(), y:mean())
|
|
|
+ end
|
|
|
+end
|
|
|
+local function test_jpeg_scale()
|
|
|
+ local loader = require './image_loader'
|
|
|
+ local src = loader.load_byte("../images/miku_CC_BY-NC.jpg")
|
|
|
+ for i = 1, 9 do
|
|
|
+ local y, x = pairwise_transform.jpeg_scale(src, 2.0, 1, 128, 7, {color_augment = true, random_half = true})
|
|
|
+ image.display({image = y, legend = "y1:" .. (i * 10), min = 0, max = 1})
|
|
|
+ image.display({image = x, legend = "x1:" .. (i * 10), min = 0, max = 1})
|
|
|
+ print(y:size(), x:size())
|
|
|
+ --print(x:mean(), y:mean())
|
|
|
+ end
|
|
|
for i = 1, 9 do
|
|
|
- local y, x = pairwise_transform.scale(src, 2.0, "Box", 128, 7, {noise = true, denoise_model = torch.load("models/noise1_model.t7")})
|
|
|
- image.display({image = y, legend = "y:" .. (i * 10)})
|
|
|
- image.display({image = x, legend = "x:" .. (i * 10)})
|
|
|
+ local y, x = pairwise_transform.jpeg_scale(src, 2.0, 2, 128, 7, {color_augment = true, random_half = true})
|
|
|
+ image.display({image = y, legend = "y2:" .. (i * 10), min = 0, max = 1})
|
|
|
+ image.display({image = x, legend = "x2:" .. (i * 10), min = 0, max = 1})
|
|
|
+ print(y:size(), x:size())
|
|
|
--print(x:mean(), y:mean())
|
|
|
end
|
|
|
end
|
|
|
--test_jpeg()
|
|
|
--test_scale()
|
|
|
+--test_jpeg_scale()
|
|
|
|
|
|
return pairwise_transform
|