|
@@ -438,6 +438,63 @@ function srcnn.srresnet_2x(backend, ch)
|
|
return model
|
|
return model
|
|
end
|
|
end
|
|
|
|
|
|
|
|
+-- large version of srresnet_2x. current best model but slow.
|
|
|
|
+function srcnn.srresnet_12l(backend, ch)
|
|
|
|
+ local function skip(backend, i, o)
|
|
|
|
+ local con = nn.Concat(2)
|
|
|
|
+ local conv = nn.Sequential()
|
|
|
|
+ conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 1, 1))
|
|
|
|
+ conv:add(ReLU(backend))
|
|
|
|
+ -- depth concat
|
|
|
|
+ con:add(conv)
|
|
|
|
+ con:add(nn.Identity()) -- skip
|
|
|
|
+ return con
|
|
|
|
+ end
|
|
|
|
+ local function resblock(backend, i, o)
|
|
|
|
+ local seq = nn.Sequential()
|
|
|
|
+ local con = nn.ConcatTable()
|
|
|
|
+ local conv = nn.Sequential()
|
|
|
|
+ conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 0, 0))
|
|
|
|
+ conv:add(nn.LeakyReLU(0.1, true))
|
|
|
|
+ conv:add(SpatialConvolution(backend, o, o, 3, 3, 1, 1, 0, 0))
|
|
|
|
+ conv:add(nn.LeakyReLU(0.1, true))
|
|
|
|
+ con:add(conv)
|
|
|
|
+ if i == o then
|
|
|
|
+ con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding
|
|
|
|
+ else
|
|
|
|
+ local seq = nn.Sequential()
|
|
|
|
+ seq:add(SpatialConvolution(backend, i, o, 1, 1, 1, 1, 0, 0))
|
|
|
|
+ seq:add(nn.SpatialZeroPadding(-2, -2, -2, -2))
|
|
|
|
+ con:add(seq)
|
|
|
|
+ end
|
|
|
|
+ seq:add(con)
|
|
|
|
+ seq:add(nn.CAddTable())
|
|
|
|
+ return seq
|
|
|
|
+ end
|
|
|
|
+ local model = nn.Sequential()
|
|
|
|
+ model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
|
+ model:add(resblock(backend, 32, 64))
|
|
|
|
+ model:add(resblock(backend, 64, 64))
|
|
|
|
+ model:add(resblock(backend, 64, 128))
|
|
|
|
+ model:add(resblock(backend, 128, 128))
|
|
|
|
+ model:add(resblock(backend, 128, 256))
|
|
|
|
+ model:add(resblock(backend, 256, 256))
|
|
|
|
+ model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
|
|
|
|
+ model:add(w2nn.InplaceClip01())
|
|
|
|
+ model:add(nn.View(-1):setNumInputDims(3))
|
|
|
|
+ model.w2nn_arch_name = "srresnet_12l"
|
|
|
|
+ model.w2nn_offset = 28
|
|
|
|
+ model.w2nn_scale_factor = 2
|
|
|
|
+ model.w2nn_resize = true
|
|
|
|
+ model.w2nn_channels = ch
|
|
|
|
+
|
|
|
|
+ --model:cuda()
|
|
|
|
+ --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
|
+
|
|
|
|
+ return model
|
|
|
|
+end
|
|
|
|
+
|
|
-- for segmentation
|
|
-- for segmentation
|
|
function srcnn.fcn_v1(backend, ch)
|
|
function srcnn.fcn_v1(backend, ch)
|
|
-- input_size = 120
|
|
-- input_size = 120
|
|
@@ -516,4 +573,5 @@ local model = srcnn.fcn_v1("cunn", 3):cuda()
|
|
print(model:forward(torch.Tensor(1, 3, 108, 108):zero():cuda()):size())
|
|
print(model:forward(torch.Tensor(1, 3, 108, 108):zero():cuda()):size())
|
|
print(model)
|
|
print(model)
|
|
--]]
|
|
--]]
|
|
|
|
+
|
|
return srcnn
|
|
return srcnn
|