|
@@ -13,6 +13,14 @@ local function convert_image(opt)
|
|
|
local x, alpha = image_loader.load_float(opt.i)
|
|
|
local new_x = nil
|
|
|
local t = sys.clock()
|
|
|
+ local scale_f, image_f
|
|
|
+ if opt.tta == 1 then
|
|
|
+ scale_f = reconstruct.scale_tta
|
|
|
+ image_f = reconstruct.image_tta
|
|
|
+ else
|
|
|
+ scale_f = reconstruct.scale
|
|
|
+ image_f = reconstruct.image
|
|
|
+ end
|
|
|
if opt.o == "(auto)" then
|
|
|
local name = path.basename(opt.i)
|
|
|
local e = path.extension(name)
|
|
@@ -25,14 +33,14 @@ local function convert_image(opt)
|
|
|
if not model then
|
|
|
error("Load Error: " .. model_path)
|
|
|
end
|
|
|
- new_x = reconstruct.image(model, x, opt.crop_size)
|
|
|
+ new_x = image_f(model, x, opt.crop_size)
|
|
|
elseif opt.m == "scale" then
|
|
|
local model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
|
local model = torch.load(model_path, "ascii")
|
|
|
if not model then
|
|
|
error("Load Error: " .. model_path)
|
|
|
end
|
|
|
- new_x = reconstruct.scale(model, opt.scale, x, opt.crop_size)
|
|
|
+ new_x = scale_f(model, opt.scale, x, opt.crop_size)
|
|
|
elseif opt.m == "noise_scale" then
|
|
|
local noise_model_path = path.join(opt.model_dir, ("noise%d_model.t7"):format(opt.noise_level))
|
|
|
local noise_model = torch.load(noise_model_path, "ascii")
|
|
@@ -45,8 +53,8 @@ local function convert_image(opt)
|
|
|
if not scale_model then
|
|
|
error("Load Error: " .. scale_model_path)
|
|
|
end
|
|
|
- x = reconstruct.image(noise_model, x)
|
|
|
- new_x = reconstruct.scale(scale_model, opt.scale, x, opt.crop_size)
|
|
|
+ x = image_f(noise_model, x)
|
|
|
+ new_x = scale_f(scale_model, opt.scale, x, opt.crop_size)
|
|
|
else
|
|
|
error("undefined method:" .. opt.method)
|
|
|
end
|
|
@@ -54,25 +62,52 @@ local function convert_image(opt)
|
|
|
print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
|
|
|
end
|
|
|
local function convert_frames(opt)
|
|
|
- local noise1_model, noise2_model, scale_model
|
|
|
+ local model_path, noise1_model, noise2_model, scale_model
|
|
|
+ local scale_f, image_f
|
|
|
+ if opt.tta == 1 then
|
|
|
+ scale_f = reconstruct.scale_tta
|
|
|
+ image_f = reconstruct.image_tta
|
|
|
+ else
|
|
|
+ scale_f = reconstruct.scale
|
|
|
+ image_f = reconstruct.image
|
|
|
+ end
|
|
|
if opt.m == "scale" then
|
|
|
- local model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
|
+ model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
|
scale_model = torch.load(model_path, "ascii")
|
|
|
if not scale_model then
|
|
|
error("Load Error: " .. model_path)
|
|
|
end
|
|
|
elseif opt.m == "noise" and opt.noise_level == 1 then
|
|
|
- local model_path = path.join(opt.model_dir, "noise1_model.t7")
|
|
|
+ model_path = path.join(opt.model_dir, "noise1_model.t7")
|
|
|
noise1_model = torch.load(model_path, "ascii")
|
|
|
if not noise1_model then
|
|
|
error("Load Error: " .. model_path)
|
|
|
end
|
|
|
elseif opt.m == "noise" and opt.noise_level == 2 then
|
|
|
- local model_path = path.join(opt.model_dir, "noise2_model.t7")
|
|
|
+ model_path = path.join(opt.model_dir, "noise2_model.t7")
|
|
|
noise2_model = torch.load(model_path, "ascii")
|
|
|
if not noise2_model then
|
|
|
error("Load Error: " .. model_path)
|
|
|
end
|
|
|
+ elseif opt.m == "noise_scale" then
|
|
|
+ model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
|
+ scale_model = torch.load(model_path, "ascii")
|
|
|
+ if not scale_model then
|
|
|
+ error("Load Error: " .. model_path)
|
|
|
+ end
|
|
|
+ if opt.noise_level == 1 then
|
|
|
+ model_path = path.join(opt.model_dir, "noise1_model.t7")
|
|
|
+ noise1_model = torch.load(model_path, "ascii")
|
|
|
+ if not noise1_model then
|
|
|
+ error("Load Error: " .. model_path)
|
|
|
+ end
|
|
|
+ elseif opt.noise_level == 2 then
|
|
|
+ model_path = path.join(opt.model_dir, "noise2_model.t7")
|
|
|
+ noise2_model = torch.load(model_path, "ascii")
|
|
|
+ if not noise2_model then
|
|
|
+ error("Load Error: " .. model_path)
|
|
|
+ end
|
|
|
+ end
|
|
|
end
|
|
|
local fp = io.open(opt.l)
|
|
|
if not fp then
|
|
@@ -89,17 +124,17 @@ local function convert_frames(opt)
|
|
|
local x, alpha = image_loader.load_float(lines[i])
|
|
|
local new_x = nil
|
|
|
if opt.m == "noise" and opt.noise_level == 1 then
|
|
|
- new_x = reconstruct.image(noise1_model, x, opt.crop_size)
|
|
|
+ new_x = image_f(noise1_model, x, opt.crop_size)
|
|
|
elseif opt.m == "noise" and opt.noise_level == 2 then
|
|
|
- new_x = reconstruct.image(noise2_model, x)
|
|
|
+ new_x = image_func(noise2_model, x)
|
|
|
elseif opt.m == "scale" then
|
|
|
- new_x = reconstruct.scale(scale_model, opt.scale, x, opt.crop_size)
|
|
|
+ new_x = scale_f(scale_model, opt.scale, x, opt.crop_size)
|
|
|
elseif opt.m == "noise_scale" and opt.noise_level == 1 then
|
|
|
- x = reconstruct.image(noise1_model, x)
|
|
|
- new_x = reconstruct.scale(scale_model, opt.scale, x, opt.crop_size)
|
|
|
+ x = image_f(noise1_model, x)
|
|
|
+ new_x = scale_f(scale_model, opt.scale, x, opt.crop_size)
|
|
|
elseif opt.m == "noise_scale" and opt.noise_level == 2 then
|
|
|
- x = reconstruct.image(noise2_model, x)
|
|
|
- new_x = reconstruct.scale(scale_model, opt.scale, x, opt.crop_size)
|
|
|
+ x = image_f(noise2_model, x, opt.crop_size)
|
|
|
+ new_x = scale_f(scale_model, opt.scale, x, opt.crop_size)
|
|
|
else
|
|
|
error("undefined method:" .. opt.method)
|
|
|
end
|
|
@@ -139,6 +174,7 @@ local function waifu2x()
|
|
|
cmd:option("-crop_size", 128, 'patch size per process')
|
|
|
cmd:option("-resume", 0, "skip existing files (0|1)")
|
|
|
cmd:option("-thread", -1, "number of CPU threads")
|
|
|
+ cmd:option("-tta", 0, '8x slower and slightly high quality (0|1)')
|
|
|
|
|
|
local opt = cmd:parse(arg)
|
|
|
if opt.thread > 0 then
|