|
@@ -59,7 +59,7 @@ local function convert_image(opt)
|
|
opt.o = format_output(opt, opt.i)
|
|
opt.o = format_output(opt, opt.i)
|
|
if opt.m == "noise" then
|
|
if opt.m == "noise" then
|
|
local model_path = path.join(opt.model_dir, ("noise%d_model.t7"):format(opt.noise_level))
|
|
local model_path = path.join(opt.model_dir, ("noise%d_model.t7"):format(opt.noise_level))
|
|
- local model = torch.load(model_path, "ascii")
|
|
|
|
|
|
+ local model = w2nn.load_model(model_path, opt.force_cudnn)
|
|
if not model then
|
|
if not model then
|
|
error("Load Error: " .. model_path)
|
|
error("Load Error: " .. model_path)
|
|
end
|
|
end
|
|
@@ -69,7 +69,7 @@ local function convert_image(opt)
|
|
print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
|
|
print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
|
|
elseif opt.m == "scale" then
|
|
elseif opt.m == "scale" then
|
|
local model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
local model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
- local model = torch.load(model_path, "ascii")
|
|
|
|
|
|
+ local model = w2nn.load_model(model_path, opt.force_cudnn)
|
|
if not model then
|
|
if not model then
|
|
error("Load Error: " .. model_path)
|
|
error("Load Error: " .. model_path)
|
|
end
|
|
end
|
|
@@ -82,8 +82,8 @@ local function convert_image(opt)
|
|
local model_path = path.join(opt.model_dir, ("noise%d_scale%.1fx_model.t7"):format(opt.noise_level, opt.scale))
|
|
local model_path = path.join(opt.model_dir, ("noise%d_scale%.1fx_model.t7"):format(opt.noise_level, opt.scale))
|
|
if path.exists(model_path) then
|
|
if path.exists(model_path) then
|
|
local scale_model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
local scale_model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
- local t, scale_model = pcall(torch.load, scale_model_path, "ascii")
|
|
|
|
- local model = torch.load(model_path, "ascii")
|
|
|
|
|
|
+ local t, scale_model = pcall(load_model, scale_model_path, opt.force_cudnn)
|
|
|
|
+ local model = w2nn.load_model(model_path, opt.force_cudnn)
|
|
if not t then
|
|
if not t then
|
|
scale_model = model
|
|
scale_model = model
|
|
end
|
|
end
|
|
@@ -94,9 +94,9 @@ local function convert_image(opt)
|
|
print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
|
|
print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
|
|
else
|
|
else
|
|
local noise_model_path = path.join(opt.model_dir, ("noise%d_model.t7"):format(opt.noise_level))
|
|
local noise_model_path = path.join(opt.model_dir, ("noise%d_model.t7"):format(opt.noise_level))
|
|
- local noise_model = torch.load(noise_model_path, "ascii")
|
|
|
|
|
|
+ local noise_model = w2nn.load_model(noise_model_path, opt.force_cudnn)
|
|
local scale_model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
local scale_model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
- local scale_model = torch.load(scale_model_path, "ascii")
|
|
|
|
|
|
+ local scale_model = w2nn.load_model(scale_model_path, opt.force_cudnn)
|
|
local t = sys.clock()
|
|
local t = sys.clock()
|
|
x = alpha_util.make_border(x, alpha, reconstruct.offset_size(scale_model))
|
|
x = alpha_util.make_border(x, alpha, reconstruct.offset_size(scale_model))
|
|
x = image_f(noise_model, x, opt.crop_size, opt.batch_size)
|
|
x = image_f(noise_model, x, opt.crop_size, opt.batch_size)
|
|
@@ -129,24 +129,24 @@ local function convert_frames(opt)
|
|
end
|
|
end
|
|
if opt.m == "scale" then
|
|
if opt.m == "scale" then
|
|
model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
- scale_model = torch.load(model_path, "ascii")
|
|
|
|
|
|
+ scale_model = w2nn.load_model(model_path, opt.force_cudnn)
|
|
elseif opt.m == "noise" then
|
|
elseif opt.m == "noise" then
|
|
model_path = path.join(opt.model_dir, string.format("noise%d_model.t7", opt.noise_level))
|
|
model_path = path.join(opt.model_dir, string.format("noise%d_model.t7", opt.noise_level))
|
|
- noise_model[opt.noise_level] = torch.load(model_path, "ascii")
|
|
|
|
|
|
+ noise_model[opt.noise_level] = w2nn.load_model(model_path, opt.force_cudnn)
|
|
elseif opt.m == "noise_scale" then
|
|
elseif opt.m == "noise_scale" then
|
|
local model_path = path.join(opt.model_dir, ("noise%d_scale%.1fx_model.t7"):format(opt.noise_level, opt.scale))
|
|
local model_path = path.join(opt.model_dir, ("noise%d_scale%.1fx_model.t7"):format(opt.noise_level, opt.scale))
|
|
if path.exists(model_path) then
|
|
if path.exists(model_path) then
|
|
- noise_scale_model[opt.noise_level] = torch.load(model_path, "ascii")
|
|
|
|
|
|
+ noise_scale_model[opt.noise_level] = w2nn.load_model(model_path, opt.force_cudnn)
|
|
model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
- t, scale_model = pcall(torch.load, model_path, "ascii")
|
|
|
|
|
|
+ t, scale_model = pcall(load_model, model_path, opt.force_cudnn)
|
|
if not t then
|
|
if not t then
|
|
scale_model = noise_scale_model[opt.noise_level]
|
|
scale_model = noise_scale_model[opt.noise_level]
|
|
end
|
|
end
|
|
else
|
|
else
|
|
model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
|
|
- scale_model = torch.load(model_path, "ascii")
|
|
|
|
|
|
+ scale_model = w2nn.load_model(model_path, opt.force_cudnn)
|
|
model_path = path.join(opt.model_dir, string.format("noise%d_model.t7", opt.noise_level))
|
|
model_path = path.join(opt.model_dir, string.format("noise%d_model.t7", opt.noise_level))
|
|
- noise_model[opt.noise_level] = torch.load(model_path, "ascii")
|
|
|
|
|
|
+ noise_model[opt.noise_level] = w2nn.load_model(model_path, opt.force_cudnn)
|
|
end
|
|
end
|
|
end
|
|
end
|
|
local fp = io.open(opt.l)
|
|
local fp = io.open(opt.l)
|
|
@@ -214,16 +214,25 @@ local function waifu2x()
|
|
cmd:option("-thread", -1, "number of CPU threads")
|
|
cmd:option("-thread", -1, "number of CPU threads")
|
|
cmd:option("-tta", 0, '8x slower and slightly high quality (0|1)')
|
|
cmd:option("-tta", 0, '8x slower and slightly high quality (0|1)')
|
|
cmd:option("-tta_level", 8, 'TTA level (2|4|8)')
|
|
cmd:option("-tta_level", 8, 'TTA level (2|4|8)')
|
|
-
|
|
|
|
|
|
+ cmd:option("-force_cudnn", 0, 'use cuDNN backend (0|1)')
|
|
|
|
+
|
|
local opt = cmd:parse(arg)
|
|
local opt = cmd:parse(arg)
|
|
if opt.thread > 0 then
|
|
if opt.thread > 0 then
|
|
torch.setnumthreads(opt.thread)
|
|
torch.setnumthreads(opt.thread)
|
|
end
|
|
end
|
|
if cudnn then
|
|
if cudnn then
|
|
cudnn.fastest = true
|
|
cudnn.fastest = true
|
|
- cudnn.benchmark = false
|
|
|
|
|
|
+ if opt.l:len() > 0 then
|
|
|
|
+ cudnn.benchmark = true -- find fastest algo
|
|
|
|
+ else
|
|
|
|
+ cudnn.benchmark = false
|
|
|
|
+ end
|
|
|
|
+ end
|
|
|
|
+ if opt.force_cudnn == 1 then
|
|
|
|
+ opt.force_cudnn = true
|
|
|
|
+ else
|
|
|
|
+ opt.force_cudnn = false
|
|
end
|
|
end
|
|
-
|
|
|
|
if string.len(opt.l) == 0 then
|
|
if string.len(opt.l) == 0 then
|
|
convert_image(opt)
|
|
convert_image(opt)
|
|
else
|
|
else
|