|
@@ -25,8 +25,6 @@ local function minibatch_adam(model, criterion, eval_metric,
|
|
|
if t + batch_size -1 > train_x:size(1) then
|
|
|
break
|
|
|
end
|
|
|
- xlua.progress(t, train_x:size(1))
|
|
|
-
|
|
|
for i = 1, batch_size do
|
|
|
inputs_tmp[i]:copy(train_x[shuffle[t + i - 1]])
|
|
|
targets_tmp[i]:copy(train_y[shuffle[t + i - 1]])
|
|
@@ -50,6 +48,7 @@ local function minibatch_adam(model, criterion, eval_metric,
|
|
|
c = c + 1
|
|
|
if c % 50 == 0 then
|
|
|
collectgarbage()
|
|
|
+ xlua.progress(t, train_x:size(1))
|
|
|
end
|
|
|
end
|
|
|
xlua.progress(train_x:size(1), train_x:size(1))
|