|
@@ -573,24 +573,122 @@ function srcnn.cunet(backend, ch)
|
|
|
return model
|
|
|
end
|
|
|
|
|
|
+-- small version of cunet
|
|
|
+function srcnn.upcunet_s(backend, ch)
|
|
|
+ -- Residual U-Net
|
|
|
+ local function unet(backend, ch, deconv)
|
|
|
+ local block1 = unet_conv(backend, 128, 256, 128, true)
|
|
|
+ local block2 = nn.Sequential()
|
|
|
+ block2:add(unet_conv(backend, 32, 64, 128, true))
|
|
|
+ block2:add(unet_branch(backend, block1, backend, 128, 128, 4))
|
|
|
+ block2:add(unet_conv(backend, 128, 64, 32, true))
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(unet_conv(backend, ch, 32, 32, true))
|
|
|
+ model:add(unet_branch(backend, block2, backend, 32, 32, 16))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1))
|
|
|
+ if deconv then
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
|
|
|
+ else
|
|
|
+ model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
+ end
|
|
|
+ return model
|
|
|
+ end
|
|
|
+ local model = nn.Sequential()
|
|
|
+ local con = nn.ConcatTable()
|
|
|
+ local aux_con = nn.ConcatTable()
|
|
|
+
|
|
|
+ -- 2 cascade
|
|
|
+ model:add(unet(backend, ch, true))
|
|
|
+ con:add(unet(backend, ch, false))
|
|
|
+ con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
|
|
|
+
|
|
|
+ aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
|
|
|
+ aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output
|
|
|
+
|
|
|
+ model:add(con)
|
|
|
+ model:add(aux_con)
|
|
|
+ model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "upcunet_s"
|
|
|
+ model.w2nn_offset = 60
|
|
|
+ model.w2nn_scale_factor = 2
|
|
|
+ model.w2nn_channels = ch
|
|
|
+ model.w2nn_resize = true
|
|
|
+ model.w2nn_valid_input_size = {}
|
|
|
+ for i = 76, 512, 4 do
|
|
|
+ table.insert(model.w2nn_valid_input_size, i)
|
|
|
+ end
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
+function srcnn.cunet_s(backend, ch)
|
|
|
+ local function unet(backend, ch)
|
|
|
+ local block1 = unet_conv(backend, 128, 256, 128, true)
|
|
|
+ local block2 = nn.Sequential()
|
|
|
+ block2:add(unet_conv(backend, 32, 64, 128, true))
|
|
|
+ block2:add(unet_branch(backend, block1, backend, 128, 128, 4))
|
|
|
+ block2:add(unet_conv(backend, 128, 64, 32, true))
|
|
|
+
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(unet_conv(backend, ch, 32, 32, true))
|
|
|
+ model:add(unet_branch(backend, block2, backend, 32, 32, 16))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
+
|
|
|
+ return model
|
|
|
+ end
|
|
|
+ local model = nn.Sequential()
|
|
|
+ local con = nn.ConcatTable()
|
|
|
+ local aux_con = nn.ConcatTable()
|
|
|
+
|
|
|
+ -- 2 cascade
|
|
|
+ model:add(unet(backend, ch))
|
|
|
+ con:add(unet(backend, ch))
|
|
|
+ con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
|
|
|
+
|
|
|
+ aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
|
|
|
+ aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output
|
|
|
+
|
|
|
+ model:add(con)
|
|
|
+ model:add(aux_con)
|
|
|
+ model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "cunet_s"
|
|
|
+ model.w2nn_offset = 40
|
|
|
+ model.w2nn_scale_factor = 1
|
|
|
+ model.w2nn_channels = ch
|
|
|
+ model.w2nn_resize = false
|
|
|
+ model.w2nn_valid_input_size = {}
|
|
|
+ for i = 100, 512, 4 do
|
|
|
+ table.insert(model.w2nn_valid_input_size, i)
|
|
|
+ end
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
+
|
|
|
local function bench()
|
|
|
local sys = require 'sys'
|
|
|
cudnn.benchmark = true
|
|
|
local model = nil
|
|
|
- local arch = {"upconv_7", "upcunet","vgg_7", "cunet"}
|
|
|
+ local arch = {"upconv_7", "upcunet","upcunet_s", "vgg_7", "cunet", "cunet_s"}
|
|
|
local backend = "cudnn"
|
|
|
+ local ch = 3
|
|
|
+ local batch_size = 1
|
|
|
+ local crop_size = 512
|
|
|
for k = 1, #arch do
|
|
|
- model = srcnn[arch[k]](backend, 3):cuda()
|
|
|
+ model = srcnn[arch[k]](backend, ch):cuda()
|
|
|
model:evaluate()
|
|
|
local dummy = nil
|
|
|
-- warn
|
|
|
for i = 1, 20 do
|
|
|
- local x = torch.Tensor(4, 3, 172, 172):uniform():cuda()
|
|
|
+ local x = torch.Tensor(batch_size, ch, crop_size, crop_size):uniform():cuda()
|
|
|
model:forward(x)
|
|
|
end
|
|
|
t = sys.clock()
|
|
|
for i = 1, 20 do
|
|
|
- local x = torch.Tensor(4, 3, 172, 172):uniform():cuda()
|
|
|
+ local x = torch.Tensor(batch_size, ch, crop_size, crop_size):uniform():cuda()
|
|
|
local z = model:forward(x)
|
|
|
if dummy == nil then
|
|
|
dummy = z:clone()
|
|
@@ -623,10 +721,10 @@ function srcnn.create(model_name, backend, color)
|
|
|
end
|
|
|
end
|
|
|
--[[
|
|
|
-local model = srcnn.cunet_v3("cunn", 3):cuda()
|
|
|
+local model = srcnn.upcunet_s("cunn", 3):cuda()
|
|
|
print(model)
|
|
|
model:training()
|
|
|
-print(model:forward(torch.Tensor(1, 3, 144, 144):zero():cuda()):size())
|
|
|
+print(model:forward(torch.Tensor(1, 3, 144, 144):zero():cuda()))
|
|
|
bench()
|
|
|
os.exit()
|
|
|
--]]
|